Displaying 421 – 440 of 5122

Showing per page

Adaptive estimation of a quadratic functional of a density by model selection

Béatrice Laurent (2005)

ESAIM: Probability and Statistics

We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate f 2 ( x ) d x is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U -statistics of order 2 due to Houdré and Reynaud.

Adaptive estimation of a quadratic functional of a density by model selection

Béatrice Laurent (2010)

ESAIM: Probability and Statistics

We consider the problem of estimating the integral of the square of a density f from the observation of a n sample. Our method to estimate f 2 ( x ) d x is based on model selection via some penalized criterion. We prove that our estimator achieves the adaptive rates established by Efroimovich and Low on classes of smooth functions. A key point of the proof is an exponential inequality for U-statistics of order 2 due to Houdré and Reynaud.

Adaptive estimation of the conditional intensity of marker-dependent counting processes

F. Comte, S. Gaïffas, A. Guilloux (2011)

Annales de l'I.H.P. Probabilités et statistiques

We propose in this work an original estimator of the conditional intensity of a marker-dependent counting process, that is, a counting process with covariates. We use model selection methods and provide a nonasymptotic bound for the risk of our estimator on a compact set. We show that our estimator reaches automatically a convergence rate over a functional class with a given (unknown) anisotropic regularity. Then, we prove a lower bound which establishes that this rate is optimal. Lastly, we provide...

Adaptive estimation of the stationary density of discrete and continuous time mixing processes

Fabienne Comte, Florence Merlevède (2002)

ESAIM: Probability and Statistics

In this paper, we study the problem of non parametric estimation of the stationary marginal density f of an α or a β -mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate f using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...

Adaptive estimation of the stationary density of discrete and continuous time mixing processes

Fabienne Comte, Florence Merlevède (2010)

ESAIM: Probability and Statistics

In this paper, we study the problem of non parametric estimation of the stationary marginal density f of an α or a β-mixing process, observed either in continuous time or in discrete time. We present an unified framework allowing to deal with many different cases. We consider a collection of finite dimensional linear regular spaces. We estimate f using a projection estimator built on a data driven selected linear space among the collection. This data driven choice is performed via the minimization...

Adaptive goodness-of-fit testing from indirect observations

Cristina Butucea, Catherine Matias, Christophe Pouet (2009)

Annales de l'I.H.P. Probabilités et statistiques

In a convolution model, we observe random variables whose distribution is the convolution of some unknown density f and some known noise density g. We assume that g is polynomially smooth. We provide goodness-of-fit testing procedures for the test H0: f=f0, where the alternative H1is expressed with respect to 𝕃 2 -norm (i.e. has the form ψ n - 2 f - f 0 2 2 𝒞 ). Our procedure is adaptive with respect to the unknown smoothness parameterτ of f. Different testing rates (ψn) are obtained according to whether f0 is polynomially...

Adaptive hard-thresholding for linear inverse problems

Paul Rochet (2013)

ESAIM: Probability and Statistics

A number of regularization methods for discrete inverse problems consist in considering weighted versions of the usual least square solution. These filter methods are generally restricted to monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic sequences....

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

We build confidence balls for the common density s of a real valued sample X1,...,Xn. We use resampling methods to estimate the projection of s onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all n ≥ 2 and the balls are adaptive over a collection of linear spaces.

Adaptive tests for periodic signal detection with applications to laser vibrometry

Magalie Fromont, Céline Lévy-leduc (2006)

ESAIM: Probability and Statistics

Initially motivated by a practical issue in target detection via laser vibrometry, we are interested in the problem of periodic signal detection in a Gaussian fixed design regression framework. Assuming that the signal belongs to some periodic Sobolev ball and that the variance of the noise is known, we first consider the problem from a minimax point of view: we evaluate the so-called minimax separation rate which corresponds to the minimal l2-distance between the signal and zero so that the detection...

Adaptive tests of homogeneity for a Poisson process

M. Fromont, B. Laurent, P. Reynaud-Bouret (2011)

Annales de l'I.H.P. Probabilités et statistiques

We propose to test the homogeneity of a Poisson process observed on a finite interval. In this framework, we first provide lower bounds for the uniform separation rates in -norm over classical Besov bodies and weak Besov bodies. Surprisingly, the obtained lower bounds over weak Besov bodies coincide with the minimax estimation rates over such classes. Then we construct non-asymptotic and non-parametric testing procedures that are adaptive in the sense that they achieve, up to a possible logarithmic...

Adaptive tests of qualitative hypotheses

Yannick Baraud, Sylvie Huet, Béatrice Laurent (2003)

ESAIM: Probability and Statistics

We propose a test of a qualitative hypothesis on the mean of a n -gaussian vector. The testing procedure is available when the variance of the observations is unknown and does not depend on any prior information on the alternative. The properties of the test are non-asymptotic. For testing positivity or monotonicity, we establish separation rates with respect to the euclidean distance, over subsets of n which are related to Hölderian balls in functional spaces. We provide a simulation study in order...

Adaptive tests of qualitative hypotheses

Yannick Baraud, Sylvie Huet, Béatrice Laurent (2010)

ESAIM: Probability and Statistics

We propose a test of a qualitative hypothesis on the mean of a n-Gaussian vector. The testing procedure is available when the variance of the observations is unknown and does not depend on any prior information on the alternative. The properties of the test are non-asymptotic. For testing positivity or monotonicity, we establish separation rates with respect to the Euclidean distance, over subsets of n which are related to Hölderian balls in functional spaces. We provide a simulation study in...

Adaptive trimmed likelihood estimation in regression

Tadeusz Bednarski, Brenton R. Clarke, Daniel Schubert (2010)

Discussiones Mathematicae Probability and Statistics

In this paper we derive an asymptotic normality result for an adaptive trimmed likelihood estimator of regression starting from initial high breakdownpoint robust regression estimates. The approach leads to quickly and easily computed robust and efficient estimates for regression. A highlight of the method is that it tends automatically in one algorithm to expose the outliers and give least squares estimates with the outliers removed. The idea is to begin with a rapidly computed consistent robust...

Adaptive wavelet estimation of the diffusion coefficient under additive error measurements

M. Hoffmann, A. Munk, J. Schmidt-Hieber (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study nonparametric estimation of the diffusion coefficient from discrete data, when the observations are blurred by additional noise. Such issues have been developed over the last 10 years in several application fields and in particular in high frequency financial data modelling, however mainly from a parametric and semiparametric point of view. This paper addresses the nonparametric estimation of the path of the (possibly stochastic) diffusion coefficient in a relatively general setting. By...

Currently displaying 421 – 440 of 5122