The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
206
In this paper we focus on the problem of estimating a bounded
density using a finite combination of densities from a given
class. We consider the Maximum Likelihood Estimator (MLE) and the
greedy procedure described by Li and Barron (1999)
under the additional assumption of boundedness of densities. We
prove an bound on the estimation error
which does not depend on the number of densities in the estimated
combination. Under the boundedness assumption,
this improves the bound of Li and Barron...
In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data n, reduced model complexity and computing budget m. The method we present is general enough to cover a wide range of applications....
We consider in this paper the statistical linear inverse problem Y = Af + ϵξ where A denotes a compact operator, ϵ a noise level and ξ a stochastic noise. The unknown function f has to be recovered from the indirect measurement Y. We are interested in the following approach: given a family of estimators, we want to select the best possible one. In this context, the unbiased risk estimation (URE) method is rather popular. Nevertheless, it is also very unstable. Recently, Cavalier and Golubev (2006)...
The problem of robust Bayesian estimation in a normal model with asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional Γ-minimax estimators are constructed. The situations when those estimators coincide are presented.
The problem of robust Bayesian estimation in some models with an asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional Γ-minimax estimators are constructed. The situations when those estimators coincide are presented.
The paper focuses on robust estimation and forecasting techniques for grouped binary data with misclassified responses. It is assumed that the data are described by the beta-mixed hierarchical model (the beta-binomial or the beta-logistic), while the misclassifications are caused by the stochastic additive distorsions of binary observations. For these models, the effect of ignoring the misclassifications is evaluated and expressions for the biases of the method-of-moments estimators and maximum...
Using Zieliński's (1977, 1983) formalization of robustness Błażej (2007) obtained uniformly most bias-robust estimates (UMBREs) of the scale parameter for some statistical models (including the exponential model), in a class of linear functions of order statistics, when violations of the models are generated by weight functions. In this paper the UMBRE of the scale parameter, based on spacings, in two weighted exponential models is derived. Extensions of results of Bartoszewicz (1986, 1987) are...
Robust estimation presented in the following paper is based on Fisher consistent and Fréchet differentiable statistical functionals. The method has been used in the multivariate normal model with variance components [5]. To transfer the method to estimate vector of expectations and positive definite covariance matrix of the multivariate normal model it is required to express the covariance matrix as a linear combination of basic elements of the vector space of real, square and symmetric matrices....
The concept of robustness given by Zieliński (1977) is considered in cases where violations of models are generated by weight functions. Uniformly most bias-robust estimates of the scale parameter, based on order statistics, are obtained for some statistical models. Extensions of results of Zieliński (1983) and Bartoszewicz (1986) are given.
In this paper are presented two robust estimators of unknown fuzzy parameters in the fuzzy regression model and investigated the relationship between these robust estimators in the classical regression model and in the fuzzy regression model.
The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments...
It is shown that a method of robust estimation in a two way crossed classification mixed model, recently proposed by Bednarski and Zontek (1996), can be extended to a more general case of variance components model with commutative a covariance matrices.
Currently displaying 161 –
180 of
206