Displaying 321 – 340 of 543

Showing per page

The role of Sommerville tetrahedra in numerical mathematics

Hošek, Radim (2017)

Programs and Algorithms of Numerical Mathematics

In this paper we summarize three recent results in computational geometry, that were motivated by applications in mathematical modelling of fluids. The cornerstone of all three results is the genuine construction developed by D. Sommerville already in 1923. We show Sommerville tetrahedra can be effectively used as an underlying mesh with additional properties and also can help us prove a result on boundary-fitted meshes. Finally we demonstrate the universality of the Sommerville's construction by...

The role of the patch test in 2D atomistic-to-continuum coupling methods∗

Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy–Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction,...

The role of the patch test in 2D atomistic-to-continuum coupling methods∗

Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

For a general class of atomistic-to-continuum coupling methods, coupling multi-body interatomic potentials with a P1-finite element discretisation of Cauchy–Born nonlinear elasticity, this paper adresses the question whether patch test consistency (or, absence of ghost forces) implies a first-order error estimate. In two dimensions it is shown that this is indeed true under the following additional technical assumptions: (i) an energy consistency condition, (ii) locality of the interface correction,...

The Rothe method and time periodic solutions to the Navier-Stokes equations and equations of magnetohydrodynamics

Dana Lauerová (1990)

Aplikace matematiky

The existence of a periodic solution of a nonlinear equation z ' + A 0 z + B 0 z = F is proved. The theory developed may be used to prove the existence of a periodic solution of the variational formulation of the Navier-Stokes equations or the equations of magnetohydrodynamics. The proof of the main existence theorem is based on Rothe method in combination with the Galerkin method, using the Brouwer fixed point theorem.

The Rothe method for the McKendrick-von Foerster equation

Henryk Leszczyński, Piotr Zwierkowski (2013)

Czechoslovak Mathematical Journal

We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in L and...

Currently displaying 321 – 340 of 543