The study of triple integral equations with generalized Legendre functions.
The Dirichlet problem for the Laplace equation for a planar domain with piecewise-smooth boundary is studied using the indirect integral equation method. The domain is bounded or unbounded. It is not supposed that the boundary is connected. The boundary conditions are continuous or p-integrable functions. It is proved that a solution of the corresponding integral equation can be obtained using the successive approximation method.
We consider a family of shell finite elements with quadratic displacements across the thickness. These elements are very attractive, but compared to standard general shell elements they face another source of numerical locking in addition to shear and membrane locking. This additional locking phenomenon – that we call “pinching locking” – is the subject of this paper and we analyse a numerical strategy designed to overcome this difficulty. Using a model problem in which only this specific source...
We consider a family of shell finite elements with quadratic displacements across the thickness. These elements are very attractive, but compared to standard general shell elements they face another source of numerical locking in addition to shear and membrane locking. This additional locking phenomenon – that we call “pinching locking” – is the subject of this paper and we analyse a numerical strategy designed to overcome this difficulty. Using a model problem in which only this specific source of...
The Tree-Grid method is a novel explicit convergent scheme for solving stochastic control problems or Hamilton-Jacobi-Bellman equations with one space dimension. One of the characteristics of the scheme is that the stencil size is dependent on space, control and possibly also on time. Because of the dependence on the control variable, it is not trivial to solve the optimization problem inside the method. Recently, this optimization part was solved by brute-force testing of all permitted controls....
The paper focuses on the acceleration of the computer optimization of heat radiation intensity on the mould surface. The mould is warmed up by infrared heaters positioned above the mould surface, and in this way artificial leathers in the automotive industry are produced (e.g. for car dashboards). The presented heating model allows us to specify the position of infrared heaters over the mould to obtain approximately even heat radiation intensity on the whole mould surface. In this way we can obtain...
This paper deals with the linear approximation scheme to approximate a singular parabolic problem: the two-phase Stefan problem on a domain consisting of two components with imperfect contact. The results of some numerical experiments and comparisons are presented. The method was used to determine the temperature of steel in the process of continuous casting.
We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrödinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators...