A new solution for the director relaxation problem in twisted nematic film based on wavelet analysis.
We study the regularity of refinable functions by analyzing the spectral properties of special operators associated to the refinement equation; in particular, we use the Fredholm determinant theory to derive numerical estimates for the spectral radius of these operators in certain spaces. This new technique is particularly useful for estimating the regularity in the cases where the refinement equation has an infinite number of nonzero coefficients and in the multidimensional cases.
The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...
The motion of an incompressible fluid confined to a shallow basin with a slightly varying bottom topography is considered. Coriolis force, surface wind and pressure stresses, together with bottom and lateral friction stresses are taken into account. We introduce appropriate scalings into a three-dimensional anisotropic eddy viscosity model; after averaging on the vertical direction and considering some asymptotic assumptions, we obtain a two-dimensional model, which approximates the three-dimensional...
In this paper we propose a new method for solving nonlinear systems of equations in finite dimensional spaces, combining the Newton-Raphson's method with the SOR idea. For the proof we adapt Kantorovich's demonstration given for the Newton-Raphson's method. As applications we reobtain the classical Newton-Raphson's method and the author's Newton-Kantorovich-Seidel type result.
We present a nonasymptotic theorem for interacting particle approximations of unnormalized Feynman–Kac models. We provide an original stochastic analysis-based on Feynman–Kac semigroup techniques combined with recently developed coalescent tree-based functional representations of particle block distributions. We present some regularity conditions under which the -relative error of these weighted particle measures grows linearly with respect to the time horizon yielding what seems to be the first...