On the reduction of a Hamiltonian matrix to Hamiltonian Schur form.
For p ≤ n, let b1(n),...,bp(n) be independent random vectors in with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...
We seek to demonstrate a connection between refinable quasi-affine systems and the discrete wavelet transform known as the à trous algorithm. We begin with an introduction of the bracket product, which is the major tool in our analysis. Using multiresolution operators, we then proceed to reinvestigate the equivalence of the duality of refinable affine frames and their quasi-affine counterparts associated with a fairly general class of scaling functions that includes the class of compactly supported...