A Relaxation Procedure for Domain Decomposition Methods Using Finite Elements.
It is shown that the approximating equations whose existence is required in the author's previous work on partially regular weak solutions can be constructed without any additional assumption about the equation itself. This leads to a variation of a Galerkin method.
In order to save CPU-time in solving large systems of equations in function spaces we decompose the large system in subsystems and solve the subsystems by an appropriate method. We give a sufficient condition for the convergence of the corresponding procedure and apply the approach to differential algebraic systems.
In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...
In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...