The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1101 –
1115 of
1115
Lanczos method for solving a system of linear equations is well known. It is derived from a generalization of the method of moments and one of its main interests is that it provides the exact answer in at most n steps where n is the dimension of the system. Lanczos method can be implemented via several recursive algorithms known as Orthodir, Orthomin, Orthores, Biconjugate gradient,... In this paper, we show that all these procedures can be explained within the framework of formal orthogonal polynomials....
Ostrowski-Kantorovich theorem of Halley method for solving nonlinear operator equations in Banach spaces is presented. The complete expression of an upper bound for the method is given based on the initial information. Also some properties of -order of convergence and sufficient asymptotic error bound will be discussed.
Currently displaying 1101 –
1115 of
1115