Displaying 1421 – 1440 of 9149

Showing per page

An approximate necessary condition for the optimal bandwidth selector in kernel density estimation

L. Gajek, A. Lenic (1993)

Applicationes Mathematicae

An approximate necessary condition for the optimal bandwidth choice is derived. This condition is used to construct an iterative bandwidth selector. The algorithm is based on resampling and step-wise fitting the bandwidth to the density estimator from the previous iteration. Examples show fast convergence of the algorithm to the bandwidth value which is surprisingly close to the optimal one no matter what is the initial knowledge on the unknown density.

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes

Emmanuel Franck, Philippe Hoch, Pierre Navaro, Gérald Samba (2011)

ESAIM: Proceedings

A new scheme for discretizing the P1 model on unstructured polygonal meshes is proposed. This scheme is designed such that its limit in the diffusion regime is the MPFA-O scheme which is proved to be a consistent variant of the Breil-Maire diffusion scheme. Numerical tests compare this scheme with a derived GLACE scheme for the P1 system.

An asymptotically unbiased moment estimator of a negative extreme value index

Frederico Caeiro, M. Ivette Gomes (2010)

Discussiones Mathematicae Probability and Statistics

In this paper we consider a new class of consistent semi-parametric estimators of a negative extreme value index, based on the set of the k largest observations. This class of estimators depends on a control or tuning parameter, which enables us to have access to an estimator with a null second-order component of asymptotic bias, and with a rather interesting mean squared error, as a function of k. We study the consistency and asymptotic normality of the proposed estimators. Their finite sample...

An asynchronous three-field domain decomposition method for first-order evolution problems

Krupička, Lukáš, Beneš, Michal (2015)

Programs and Algorithms of Numerical Mathematics

We present an asynchronous multi-domain time integration algorithm with a dual domain decomposition method for the initial boundary-value problems for a parabolic equation. For efficient parallel computing, we apply the three-field domain decomposition method with local Lagrange multipliers to ensure the continuity of the primary unknowns at the interface between subdomains. The implicit method for time discretization and the multi-domain spatial decomposition enable us to use different time steps...

Currently displaying 1421 – 1440 of 9149