An Extension of the Lax-Richtmyer Theory.
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin...
An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.
In this paper we study the finite element approximations to the parabolic and hyperbolic integrodifferential equations and present an immediate analysis for global superconvergence for these problems, without using the Ritz projection or its modified forms.
A new biorthogonalization algorithm is defined which does not depend on the step-size used. The algorithm is suggested so as to minimize the total error after steps if imperfect steps are used. The majority of conjugate gradient algorithms are sensitive to the exactness of the line searches and this phenomenon may destroy the global efficiency of these algorithms.
In this article, we consider the initial value problem which is obtained after a space discretization (with space step ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between and the time step size...