Analysis of the potential formulation for the eddy current problem in a bounded domain.
In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the mth member of the class of algorithms () finds iteratively an approximation of the appropriate zero of the (m+1)st...
We deal with a scalar nonstationary convection-diffusion equation with nonlinear convective as well as diffusive terms which represents a model problem for the solution of the system of the compressible Navier-Stokes equations describing a motion of viscous compressible fluids. We present a discretization of this model equation by the discontinuous Galerkin finite element method. Moreover, under some assumptions on the nonlinear terms, domain partitions and the regularity of the exact solution,...
The paper is concerned with the numerical analysis of an elliptic equation in a polygon with a nonlinear Newton boundary condition, discretized by the finite element or discontinuous Galerkin methods. Using the monotone operator theory, it is possible to prove the existence and uniqueness of the exact weak solution and the approximate solution. The main attention is paid to the study of error estimates. To this end, the regularity of the weak solution is investigated and it is shown that due to...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter , and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since our...
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter ε, see (1.7)) and the minimal surface flow [21] and the prescribed mean curvature flow [16]. Since...
In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider a set of assumptions...
In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider a...
This study seeks to analyse some important questions related to the Stochastic Frontier Model, such as the method proposed by Jondrow et al (1982) to separate the error term into its two components, and the measure of efficiency given by Timmer (1971). To this purpose, a Monte Carlo experiment has been carried out using the Half-Normal and Normal-Exponential specifications throughout the rank of the γ parameter. The estimation errors have been eliminated, so that the intrinsic variability of the...
This work describes a method to rigorously compute the real Floquet normal form decomposition of the fundamental matrix solution of a system of linear ODEs having periodic coefficients. The Floquet normal form is validated in the space of analytic functions. The technique combines analytical estimates and rigorous numerical computations and no rigorous integration is needed. An application to the theory of dynamical system is presented, together with a comparison with the results obtained by computing...