Displaying 101 – 120 of 157

Showing per page

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference operator...

Propagation of errors in dynamic iterative schemes

Zubik-Kowal, Barbara (2017)

Proceedings of Equadiff 14

We consider iterative schemes applied to systems of linear ordinary differential equations and investigate their convergence in terms of magnitudes of the coefficients given in the systems. We address the question of whether the reordering of equations in a given system improves the convergence of an iterative scheme.

Raman laser : mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Raman laser: mathematical and numerical analysis of a model

François Castella, Philippe Chartier, Erwan Faou, Dominique Bayart, Florence Leplingard, Catherine Martinelli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a discrete Raman laser amplification model given as a Lotka-Volterra system. We show that in an ideal situation, the equations can be written as a Poisson system with boundary conditions using a global change of coordinates. We address the questions of existence and uniqueness of a solution. We deduce numerical schemes for the approximation of the solution that have good stability.

Richardson Extrapolation combined with the sequential splitting procedure and the θ-method

Zahari Zlatev, István Faragó, Ágnes Havasi (2012)

Open Mathematics

Initial value problems for systems of ordinary differential equations (ODEs) are solved numerically by using a combination of (a) the θ-method, (b) the sequential splitting procedure and (c) Richardson Extrapolation. Stability results for the combined numerical method are proved. It is shown, by using numerical experiments, that if the combined numerical method is stable, then it behaves as a second-order method.

Some applications of the Pascal matrix to the study of numerical methods for differential equations

Lidia Aceto (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.

Currently displaying 101 – 120 of 157