The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 81 –
100 of
143
We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...
We introduce and analyze a numerical strategy
to approximate effective coefficients in stochastic homogenization of discrete elliptic
equations. In particular, we consider the simplest case possible: An elliptic equation on
the d-dimensional lattice
with independent and identically distributed conductivities on the associated edges.
Recent results by Otto and the author quantify the error made by approximating
the homogenized coefficient by the averaged energy of a regularized
corrector (with...
A sparse algebraic multigrid method is studied as a cheap and accurate way to compute approximations of Schur complements of matrices arising from the discretization of some symmetric and positive definite partial differential operators. The construction of such a multigrid is discussed and numerical experiments are used to verify the properties of the method.
A sparse algebraic multigrid method is studied as a cheap and accurate
way to compute approximations of Schur complements of matrices
arising from the discretization of some symmetric and positive definite
partial differential operators. The construction of such a multigrid is
discussed and numerical experiments are used to verify the properties
of the method.
Over the last three decades Computational Fluid Dynamics (CFD) has gradually joined the
wind tunnel and flight test as a primary flow analysis tool for aerodynamic designers. CFD
has had its most favorable impact on the aerodynamic design of the high-speed cruise
configuration of a transport. This success has raised expectations among aerodynamicists
that the applicability of CFD can be extended to the full flight envelope. However, the
complex nature...
Fast direct solvers for the Poisson equation with homogeneous Dirichlet and Neumann boundary conditions on special triangles and tetrahedra are constructed. The domain given is extended by symmetrization or skew symmetrization onto a rectangle or a rectangular parallelepiped and a fast direct solver is used there. All extendable domains are found. Eigenproblems are also considered.
The present paper deals with the numerical solution of the nonlinear heat equation. An iterative method is suggested in which the iterations are obtained by solving linear heat equation. The convergence of the method is proved under very natural conditions on given input data of the original problem. Further, questions of convergence of the Galerkin method applied to the original equation as well as to the linear equations in the above mentioned iterative method are studied.
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
Currently displaying 81 –
100 of
143