The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The theory of
compensated compactness of Murat and Tartar links the algebraic condition
of rank-r convexity with the analytic condition of weak
lower
semicontinuity. The former is an algebraic
condition and therefore it is, in principle, very easy to use. However,
in applications of this theory, the need for an efficient classification of
rank-r convex forms arises. In the present paper,
we define the concept of extremal 2-forms and characterize them
in the rotationally invariant jointly...
In this paper we elaborate a model to describe some aspects of the human lung considered as a continuous, deformable, medium.
To that purpose, we
study the asymptotic behavior of a
spring-mass system with dissipation. The key feature of our approach is the nature of this dissipation phenomena, which is related here to the flow of a viscous fluid through a dyadic tree of pipes (the branches), each exit of which being connected to an air pocket (alvelola) delimited by two successive masses.
The...
Two-scale convergence is a special weak convergence used in homogenization theory. Besides the original definition by Nguetseng and Allaire two alternative definitions are introduced and compared. They enable us to weaken requirements on the admissibility of test functions . Properties and examples are added.
We study the initial boundary value problem for the system of thermoelasticity in a sequence of perforated cylindrical domains , s = 1,2,... We prove that as s → ∞, the solution of the problem converges in appropriate topologies to the solution of a limit initial boundary value problem of the same type but containing some additional terms which are expressed in terms of quantities related to the geometry of . We give an explicit construction of that limit problem.
In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to overcome...
In this article, the homogenization process of periodic structures is analyzed using Bloch waves in the case of system of linear elasticity in three
dimensions. The Bloch wave method for homogenization relies on the regularity of the
lower Bloch spectrum. For the three dimensional linear elasticity system,
the first eigenvalue is degenerate of multiplicity three and hence
existence of such a regular Bloch spectrum is not guaranteed. The
aim here is to develop all necessary spectral tools to overcome...
In this paper we derive lower bounds and upper bounds on the effective properties for nonlinear heterogeneous systems. The key result to obtain these bounds is to derive a variational principle, which generalizes the variational principle by P. Ponte Castaneda from 1992. In general, when the Ponte Castaneda variational principle is used one only gets either a lower or an upper bound depending on the growth conditions. In this paper we overcome this problem by using our new variational principle...
In this paper we derive upper and lower bounds on the homogenized energy density functional corresponding to degenerated -Poisson equations. Moreover, we give some non-trivial examples where the bounds are tight and thus can be used as good approximations of the homogenized properties. We even present some cases where the bounds coincide and also compare them with some numerical results.
We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...
We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of
cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete
lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete
homogenization technique. The macroscopic constitutive law is obtained through the resolution of a
nonlinear self-equilibrum system of the discrete lattice...
A corrector theory for the strong approximation of gradient fields inside periodic composites made from two materials with different power law behavior is provided. Each material component has a distinctly different exponent appearing in the constitutive law relating gradient to flux. The correctors are used to develop bounds on the local singularity strength for gradient fields inside micro-structured media. The bounds are multi-scale in nature and can be used to measure the amplification of applied...
Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the...
This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic...
Currently displaying 1 –
20 of
84