Displaying 281 – 300 of 697

Showing per page

Homogenization of the Maxwell equations: Case I. Linear theory

Niklas Wellander (2001)

Applications of Mathematics

The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.

Homogenization of the Maxwell Equations: Case II. Nonlinear conductivity

Niklas Wellander (2002)

Applications of Mathematics

The Maxwell equations with uniformly monotone nonlinear electric conductivity in a heterogeneous medium, which may be non-periodic, are homogenized by two-scale convergence. We introduce a new set of function spaces appropriate for the nonlinear Maxwell system. New compactness results, of two-scale type, are proved for these function spaces. We prove existence of a unique solution for the heterogeneous system as well as for the homogenized system. We also prove that the solutions of the heterogeneous...

Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting

A. Sedki, D. Ouazar (2010)

Mathematical Modelling of Natural Phenomena

In this paper, an artificial neural network (ANN) based on hybrid algorithm combining particle swarm optimization (PSO) with back-propagation (BP) is proposed to forecast the daily streamflows in a catchment located in a semi-arid region in Morocco. The PSO algorithm has a rapid convergence during the initial stages of a global search, while the BP algorithm can achieve faster convergent speed around the global optimum. By combining the PSO with...

Hyperbolic Cauchy problem and Leray's residue formula

Susumu Tanabé (2000)

Annales Polonici Mathematici

We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.

Il criterio dell'energia e Vequazione di Maxwell-Cattaneo nella termodinamica dei sistemi elettromagnetici non lineari

Ettore Laserra, Giovanni Matarazzo (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the evolution law of the canonical energy of an electromagnetic material, immersed in an environment that is thermally and electromagnetically passive, at constant temperature. We use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem

Yanlai Chen, Jan S. Hesthaven, Yvon Maday, Jerónimo Rodríguez (2009)

ESAIM: Mathematical Modelling and Numerical Analysis


In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints...

Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems

Nathalie Bartoli, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new system of integral equations for the exterior 2D time harmonic scattering problem is investigated. This system was first proposed by B. Després in [11]. Two new derivations of this system are given: one from elementary manipulations of classical equations, the other based on a minimization of a quadratic functional. Numerical issues are addressed to investigate the potential of the method.

Introduction to magnetic resonance imaging for mathematicians

Charles L. Epstein (2004)

Annales de l’institut Fourier

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Currently displaying 281 – 300 of 697