Some details of proofs of theorems related to the quantum dynamical Yang-Baxter equation.
This paper presents some manner of characterization of Boolean rings. These algebraic systems one can also characterize by means of some distributivities satisfied in GBbi-QRs.
* Supported by COMBSTRU Research Training Network HPRN-CT-2002-00278 and the Bulgarian National Science Foundation under Grant MM-1304/03.Additive code C over GF(4) of length n is an additive subgroup of GF(4)n. It is well known [4] that the problem of finding stabilizer quantum error-correcting codes is transformed into problem of finding additive self-orthogonal codes over the Galois field GF(4) under a trace inner product. Our purpose is to construct good additive self-dual codes of length 13...
This work is devoted to generalizing the Lebesgue decomposition and the Radon-Nikodym theorem to Gleason measures. For that purpose we introduce a notion of integral for operators with respect to a Gleason measure. Finally, we give an example showing that the Gleason theorem does not hold in non-separable Hilbert spaces.
We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
Given a Hilbert space with a Borel probability measure , we prove the -dissipativity in of a Kolmogorov operator that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
The author presents a simple method (by using the standard theory of connections on principle bundles) of -decomposition of the physical equations written in terms of differential forms on a 4-dimensional spacetime of general relativity, with respect to a general observer. Finally, the author suggests possible applications of such a decomposition to the Maxwell theory.
We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore...
We present a new method for establishing the ‘‘gap” property for finitely generated subgroups of , providing an elementary solution of Ruziewicz problem on as well as giving many new examples of finitely generated subgroups of with an explicit gap. The distribution of the eigenvalues of the elements of the group ring in the -th irreducible representation of is also studied. Numerical experiments indicate that for a generic (in measure) element of , the “unfolded” consecutive spacings...