Quasi-exactly solvable Schrödinger operators in three dimensions.
In this paper we study approximate quasi-probability distribution functions of nonclassical states such as incoherent states, Kerr states, squeezed states and k-photon coherent states in interacting Fock space.
In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.
The q-white noise is studied as the time derivative of the q-Brownian motion. As an application of the q-white noise, a non-adapted (non-commutative) stochastic integral with respect to the q-Brownian motion is constructed.
En utilisant la méthode du double quantique, nous construisons une -matrice universelle pour la quantification de la superalgèbre de Lie . Nous utilisons ce résultat pour construire un invariant d’entrelacs et nous montrons qu’il est égal à une spécialisation du polynôme de Dubrovnik introduit par Kauffman.
A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.
Let be a 1-connected closed manifold of dimension and be the space of free loops on . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of , . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between and the shifted homology . We also prove that the...
We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold . We prove that the loop homology of is isomorphic to the Hochschild cohomology of the cochain algebra with coefficients in . Some explicit computations of the loop product and the string bracket are given.