Displaying 1601 – 1620 of 2284

Showing per page

Riemannian metrics on 2D-manifolds related to the Euler−Poinsot rigid body motion

Bernard Bonnard, Olivier Cots, Jean-Baptiste Pomet, Nataliya Shcherbakova (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the...

Ring-like structures with unique symmetric difference related to quantum logic

Dietmar Dorninger, Helmut Länger, Maciej Maczyński (2001)

Discussiones Mathematicae - General Algebra and Applications

Ring-like quantum structures generalizing Boolean rings and having the property that the terms corresponding to the two normal forms of the symmetric difference in Boolean algebras coincide are investigated. Subclasses of these structures are algebraically characterized and related to quantum logic. In particular, a physical interpretation of the proposed model following Mackey's approach to axiomatic quantum mechanics is given.

Scattering on stratified media: the microlocal properties of the scattering matrix and recovering asymptotics of perturbations

Tanya Christiansen, M. S. Joshi (2003)

Annales de l’institut Fourier

The scattering matrix is defined on a perturbed stratified medium. For a class of perturbations, its main part at fixed energy is a Fourier integral operator on the sphere at infinity. Proving this is facilitated by developing a refined limiting absorption principle. The symbol of the scattering matrix determines the asymptotics of a large class of perturbations.

Scattering theory for 3-particle systems in constant magnetic fields : dispersive case

Christian Gérard, Izabella Łaba (1996)

Annales de l'institut Fourier

We develop a scattering theory for quantum systems of three charged particles in a constant magnetic field. For such systems, we generalize our earlier results in that we make no additional assumptions on the electric charges of subsystems. The main difficulty is the analysis of the scattering channels corresponding to the motion of the bound states of the neutral subsystems in the directions transversal to the field. The effective kinetic energy of this motion is given by certain dispersive Hamiltonians;...

Currently displaying 1601 – 1620 of 2284