The intertwining of affine Kac-Moody and current algebras
By taking into account the work of J. Rataj and M. Zähle [Geom. Dedicata 57, 259-283 (1995; Zbl 0844.53050)], R. Schneider and W. Weil [Math. Nachr. 129, 67-80 (1986; Zbl 0602.52003)], W. Weil [Math. Z. 205, 531-549 (1990; Zbl 0705.52006)], an integral formula is obtained here by using the technique of rectifiable currents.This is an iterated version of the principal kinematic formula for sets of positive reach and generalized curvature measures.
We describe a microlocal normal form for a symmetric system of pseudo-differential equations whose principal symbol is a real symmetric matrix with a generic crossing of eigenvalues. We use it in order to give a precise description of the microlocal solutions.
This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case''(Annales de l'Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.
The electronic Schrödinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, three spatial dimensions for each electron. Approximating them is thus inordinately challenging. As is shown in the author's monograph [Yserentant, Lecture Notes in Mathematics 2000, Springer (2010)], the regularity of the solutions, which increases with the number of electrons,...