The quantum stability problem for time-periodic perturbations of the harmonic oscillator
We consider the high-frequency Helmholtz equation with a given source term, and a small absorption parameter . The high-frequency (or: semi-classical) parameter is . We let and go to zero simultaneously. We assume that the zero energy is non-trapping for the underlying classical flow. We also assume that the classical trajectories starting from the origin satisfy a transversality condition, a generic assumption.Under these assumptions, we prove that the solution radiates in the outgoing...
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...
The motivation of this article is double. First of all we provide a geometrical framework to the application of the smooth continuation method in optimal control, where the concept of conjugate points is related to the convergence of the method. In particular, it can be applied to the analysis of the global optimality properties of the geodesic flows of a family of Riemannian metrics. Secondly, this study is used to complete the analysis of two-level dissipative quantum systems, where the system...
We consider equivariant solutions of Schrödinger equations on C∖{0} with harmonic oscillator potentials. We determine the spaces of equivariant quantum states in three cases: for an isotropic and anisotropic harmonic oscillator potential centered at 0, and for a potential not centered at 0.