The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1301 – 1320 of 1377

Showing per page

Vortex motion and phase-vortex interaction in dissipative Ginzburg-Landau dynamics

F. Bethuel, G. Orlandi, D. Smets (2004)

Journées Équations aux dérivées partielles

We discuss the asymptotics of the parabolic Ginzburg-Landau equation in dimension N 2 . Our only asumption on the initial datum is a natural energy bound. Compared to the case of “well-prepared” initial datum, this induces possible new energy modes which we analyze, and in particular their mutual interaction. The two dimensional case is qualitatively different and requires a separate treatment.

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Weak- L p solutions for a model of self-gravitating particles with an external potential

Andrzej Raczyński (2007)

Studia Mathematica

The existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential is studied in weak- L p spaces (i.e. Markiewicz spaces). The main goal is to prove the existence of global solutions and to study their large time behaviour.

Currently displaying 1301 – 1320 of 1377