The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 121 – 140 of 241

Showing per page

Compression of satellite data.

Roberto Barrio, Antonio Elipe (2002)

Revista Matemática Complutense

In this paper, we present the simple and double compression algorithms with an error control for compressing satellite data corresponding to several revolutions. The compressions are performed by means of approximations in the norm L∞ by finite series of Chebyshev polynomials, with their known properties of fast evaluation, uniform distribution of the error, and validity over large intervals of time. By using the error control here introduced, the number of terms of the series is given automatically...

Computation of the distance to semi-algebraic sets

Christophe Ferrier (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the computation of distance to set, called S, defined by polynomial equations. First we consider the case of quadratic systems. Then, application of results stated for quadratic systems to the quadratic equivalent of polynomial systems (see [5]), allows us to compute distance to semi-algebraic sets. Problem of computing distance can be viewed as non convex minimization problem: d ( u , S ) = inf x S x - u 2 , where u is in n . To have, at least, lower approximation of distance, we consider the dual...

Computation of the limiting distribution in queueing systems with repeated attempts and disasters

J. R. Artalejo, A. Gómez-Corral (2010)

RAIRO - Operations Research

Single server queues with repeated attempts are useful in the modeling of computer and telecommunication systems. In addition, we consider in this paper the possibility of disasters. When a disaster occurs, all the customers present in the system are destroyed immediately. Using a regenerative approach, we derive a numerically stable recursion scheme for the state probabilities. This model can be employed to analyze the behaviour of a buffer in computers with virus infections.

Computational schemes for two exponential servers where the first has a finite buffer

Moshe Haviv, Rita Zlotnikov (2011)

RAIRO - Operations Research - Recherche Opérationnelle

We consider a system consisting of two not necessarily identical exponential servers having a common Poisson arrival process. Upon arrival, customers inspect the first queue and join it if it is shorter than some threshold n. Otherwise, they join the second queue. This model was dealt with, among others, by Altman et al. [Stochastic Models20 (2004) 149–172]. We first derive an explicit expression for the Laplace-Stieltjes transform of the distribution underlying the arrival (renewal) process to...

Computational schemes for two exponential servers where the first has a finite buffer

Moshe Haviv, Rita Zlotnikov (2011)

RAIRO - Operations Research

We consider a system consisting of two not necessarily identical exponential servers having a common Poisson arrival process. Upon arrival, customers inspect the first queue and join it if it is shorter than some threshold n. Otherwise, they join the second queue. This model was dealt with, among others, by Altman et al. [Stochastic Models20 (2004) 149–172]. We first derive an explicit expression for the Laplace-Stieltjes transform of the distribution underlying the arrival (renewal) process to...

Computing and proving with pivots

Frédéric Meunier (2013)

RAIRO - Operations Research - Recherche Opérationnelle

A simple idea used in many combinatorial algorithms is the idea of pivoting. Originally, it comes from the method proposed by Gauss in the 19th century for solving systems of linear equations. This method had been extended in 1947 by Dantzig for the famous simplex algorithm used for solving linear programs. From since, a pivoting algorithm is a method exploring subsets of a ground set and going from one subset σ to a new one σ′ by deleting an element inside σ and adding an element outside σ: σ′ = σv}  ∪  {u},...

Computing minimum norm solution of a specific constrained convex nonlinear problem

Saeed Ketabchi, Hossein Moosaei (2012)

Kybernetika

The characterization of the solution set of a convex constrained problem is a well-known attempt. In this paper, we focus on the minimum norm solution of a specific constrained convex nonlinear problem and reformulate this problem as an unconstrained minimization problem by using the alternative theorem.The objective function of this problem is piecewise quadratic, convex, and once differentiable. To minimize this function, we will provide a new Newton-type method with global convergence properties....

Currently displaying 121 – 140 of 241