The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
241
A vector is said to be an eigenvector of a square max-min matrix if . An eigenvector of is called the greatest -eigenvector of if and for each eigenvector . A max-min matrix is called strongly -robust if the orbit reaches the greatest -eigenvector with any starting vector of . We suggest an algorithm for computing the greatest -eigenvector of and study the strong -robustness. The necessary and sufficient conditions for strong -robustness are introduced and an efficient...
In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...
En este trabajo se establece una caracterización de las soluciones óptimas para el problema continuo de Programación Semi-Infinita Lineal, donde el conjunto de índices es un compacto de Rp. Para la demostración de la condición necesaria de optimalidad se ha utilizado una extensión de la cualificación de restricciones de Mangasarian-Fromovitz. Hemos probado que dicha cualificación es imprescindible para asegurar que no hay desigualdades inestables en el conjunto posible y para que existan puntos...
Bajo condiciones muy generales, la acotación del conjunto factible en un problema de Programación Semi-Infinita garantiza la existencia de solución óptima del problema. Por ello, se estudian en la primera parte condiciones suficientes para la acotación del conjunto de soluciones de un sistema de infinitas ecuaciones. En la segunda parte se dan condiciones de diversa índole que involucran a la función objetivo de distintas maneras, a saber, a través de la función de Lagrange asociada al problema,...
Ce travail porte sur l'optimisation des lignes
d'usinage pour la grande série. Une telle ligne comporte plusieurs
postes de travail, chacun étant équipé avec boîtiers multibroches. Un
boîtier multibroche exécute plusieurs opérations en parallèle.
Lors de la conception en avant-projet,
il est nécessaire d'affecter toutes les opérations à des boîtiers et
des postes de travail de sorte à minimiser le nombre de postes et de
boîtiers utilisés. Pour ce nouveau problème d'équilibrage des lignes
de production,...
The problem of fault detection in distributed parameter systems (DPSs) is formulated as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A computational scheme is provided for the design of a network of observation locations in a spatial domain that are supposed to be used while detecting changes in the underlying parameters of a distributed parameter system. The setting considered relates to a situation where from among...
We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...
We prove the conical differentiability of the solution to a bone
remodeling contact rod model, for given data (applied loads and
rigid obstacle), with respect to small perturbations of the cross
section of the rod. The proof is based on the special structure of
the model, composed of a variational inequality coupled with an
ordinary differential equation with respect to time. This
structure enables the verification of the two following
fundamental results: the polyhedricity of a modified displacement
constraint...
The paper contains a description and an analysis of two modifications of the conjugate gradient method for unconstrained minimization which find a minimum of the conic function after a finite number of steps. Moreover, further extension of the conjugate gradient method is given which is based on a more general class of the model functions.
This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus...
Currently displaying 141 –
160 of
241