Displaying 181 – 200 of 212

Showing per page

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2009)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov's second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2008)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...

Exponential stability of nonlinear systems with event-triggered schemes and its application

Zhang Li, Gang Yu, Yanjun Shen (2021)

Kybernetika

In this paper, we discuss exponential stability for nonlinear systems with sampled-data-based event-triggered schemes. First, a framework is proposed to analyze exponential stability for nonlinear systems under some different triggering conditions. Based on these results, output feedback exponential stabilization is investigated for a class of inherently nonlinear systems under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is verified by numerical simulations....

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks*

Zhong-Jie Han, Gen-Qi Xu (2011)

ESAIM: Control, Optimisation and Calculus of Variations


In this paper, the stability of a Timoshenko beam with time delays in the boundary input is studied. The system is fixed at the left end, and at the other end there are feedback controllers, in which time delays exist. We prove that this closed loop system is well-posed. By the complete spectral analysis, we show that there is a sequence of eigenvectors and generalized eigenvectors of the system operator that forms a Riesz basis for the state Hilbert space. Hence the system satisfies the spectrum...

Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics

Pascal Morin, Claude Samson (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Exponential stabilization of nonlinear driftless affine control systems is addressed with the concern of achieving robustness with respect to imperfect knowledge of the system's control vector fields. In order to satisfy this robustness requirement, and inspired by Bennani and Rouchon [1] where the same issue was first addressed, we consider a control strategy which consists in applying periodically updated open-loop controls that are continuous with respect to state initial conditions. These...

Exponential utility optimization, indifference pricing and hedging for a payment process

Łukasz Delong (2012)

Applicationes Mathematicae

We deal with pricing and hedging for a payment process. We investigate a Black-Scholes financial market with stochastic coefficients and a stream of liabilities with claims occurring at random times, continuously over the duration of the contract and at the terminal time. The random times of the claims are generated by a random measure with a stochastic intensity of jumps. The claims are written on the asset traded in the financial market and on the non-tradeable source of risk driven by the random...

Extended lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems

Guisheng Zhai, Xuping Xu, Hai Lin, Derong Liu (2007)

International Journal of Applied Mathematics and Computer Science

We analyze stability for switched systems which are composed of both continuous-time and discrete-time subsystems. By considering a Lie algebra generated by all subsystem matrices, we show that if all subsystems are Hurwitz/Schur stable and this Lie algebra is solvable, then there is a common quadratic Lyapunov function for all subsystems and thus the switched system is exponentially stable under arbitrary switching. When not all subsystems are stable and the same Lie algebra is solvable, we show...

Currently displaying 181 – 200 of 212