Displaying 461 – 480 of 566

Showing per page

Analytic controllability of the wave equation over a cylinder

Brice Allibert (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the controllability of the wave equation on a cylinder when the control acts on the boundary, that does not satisfy the classical geometric control condition. We obtain precise estimates on the analyticity of reachable functions. As the control time increases, the degree of analyticity that is required for a function to be reachable decreases as an inverse power of time. We conclude that any analytic function can be reached if that control time is large enough. In the C∞ class, a...

Analytic interpolation and the degree constraint

Tryphon Georgiou (2001)

International Journal of Applied Mathematics and Computer Science

Analytic interpolation problems arise quite naturally in a variety of engineering applications. This is due to the fact that analyticity of a (transfer) function relates to the stability of a corresponding dynamical system, while positive realness and contractiveness relate to passivity. On the other hand, the degree of an interpolant relates to the dimension of the pertinent system, and this motivates our interest in constraining the degree of interpolants. The purpose of the present paper is to...

Another set of verifiable conditions for average Markov decision processes with Borel spaces

Xiaolong Zou, Xianping Guo (2015)

Kybernetika

In this paper we give a new set of verifiable conditions for the existence of average optimal stationary policies in discrete-time Markov decision processes with Borel spaces and unbounded reward/cost functions. More precisely, we provide another set of conditions, which only consists of a Lyapunov-type condition and the common continuity-compactness conditions. These conditions are imposed on the primitive data of the model of Markov decision processes and thus easy to verify. We also give two...

Application of a Java-based framework to parallel simulation of large-scale systems

Ewa Niewiadomska-Szynkiewicz, Maciej Żmuda, Maciej Żmuda (2003)

International Journal of Applied Mathematics and Computer Science

Large-scale systems, such as computer and telecommunication networks, complex control systems and many others, operate in inherently parallel environments. It follows that there are many opportunities to admit parallelism into both the algorithm of control implementation and simulation of the system operation considered. The paper addresses issues associated with the application of parallel discrete event simulation (PDES). We discuss the PDES terminology and methodology. Particular attention is...

Application of a second order VSC to nonlinear systems in multi-input parametric-pure-feedback form

Antonella Ferrara, Luisa Giacomini (2000)

Kybernetika

The use of a multi-input control design procedure for uncertain nonlinear systems expressible in multi-input parametric-pure feedback form to determine the control law for a class of mechanical systems is described in this paper. The proposed procedure, based on the well-known backstepping design technique, relies on the possibility of extending to multi-input uncertain systems a second order sliding mode control approach recently developed, thus reducing the computational load, as well as increasing...

Application of bearing and distance trees to the identification of landmarks on the coast

Tomasz Praczyk (2007)

International Journal of Applied Mathematics and Computer Science

The problem of continuous position availability is one of the most important issues connected with the human activity at sea. Because the availability of satellite navigational systems can be limited in some cases, e.g. during military operations, one has to consider additional methods of acquiring information about the ship's position. In this paper one of these methods is presented, which is based on exploiting landmarks located on a coastline. A navigational radar is used to obtain information...

Application of Fractional Calculus in the Dynamical Analysis and Control of Mechanical Manipulators

Ferreira, N., Duarte, Fernando, Lima, Miguel, Marcos, Maria, Machado, J. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. This article illustrates several applications of fractional calculus in robot manipulator path planning and control....

Application of the Drazin inverse to the analysis of descriptor fractional discrete-time linear systems with regular pencils

Tadeusz Kaczorek (2013)

International Journal of Applied Mathematics and Computer Science

The Drazin inverse of matrices is applied to find the solutions of the state equations of descriptor fractional discrete-time systems with regular pencils. An equality defining the set of admissible initial conditions for given inputs is derived. The proposed method is illustrated by a numerical example.

Application of triple correlation and bispectrum for interference immunity improvement in telecommunications systems

Pavel Molchanov, Alexandr Totsky (2008)

International Journal of Applied Mathematics and Computer Science

This paper presents a new noise immunity encoding/decoding technique by using the features of triple correlation and bispectrum widely employed in digital signal processing systems operating in noise environments. The triple correlationand bispectrum-based encoding/decoding algorithm is tested for a digital radio telecommunications binary frequency shift keying system. The errorless decoding probability was analyzed by means of computer simulation for the transmission and reception of a test message...

Currently displaying 461 – 480 of 566