Displaying 81 – 100 of 117

Showing per page

Formal validation of fuzzy control techniques. Perspectives.

Antonio Sala, Pedro Albertos (1999)

Mathware and Soft Computing

In this paper, a survey of the state of the art and perspectives of two main lines of research in fuzzy control systems is presented: on one hand, the navas interpolative-functional line representing fuzzy systems as parameterized universal function approximators, thus applying nonlinear control and neural network paradigms; on the other hand, a logic-formal approach where fuzzy systems are analysed in terms of logic interpretations, exploring validation, consistency and completeness, uncertainty...

Forward invariant sets, homogeneity and small-time local controllability

Mikhail Krastanov (1995)

Banach Center Publications

The property of forward invariance of a subset of R n with respect to a differential inclusion is characterized by using the notion of a perpendicular to a set. The obtained results are applied for investigating the dependence of the small-time local controllability of a homogeneous control system on parameters.

Fractional kalman filter algorithm for the states parameters and order of fractional system estimation

Dominik Sierociuk, Andrzej Dzieliński (2006)

International Journal of Applied Mathematics and Computer Science

This paper presents a generalization of the Kalman filter for linear and nonlinear fractional order discrete state-space systems. Linear and nonlinear discrete fractional order state-space systems are also introduced. The simplified kalman filter for the linear case is called the fractional Kalman filter and its nonlinear extension is named the extended fractional Kalman filter. The background and motivations for using such techniques are given, and some algorithms are discussed. The paper also...

Full cooperation applied to environmental improvements

Monique Jeanblanc, Rafał M. Łochowski, Wojciech Szatzschneider (2015)

Banach Center Publications

We analyse the case of certificates of environmental improvements and full cooperation of two identical agents. We model pollution levels as geometric Brownian motions with quadratic costs of improvements. Our main result is the construction of the optimal improvements strategy in the case of separate actions, collusive actions and fusion. In certain range of the model parameters, the fusion solution generates lower pollution levels than separate and collusive actions.

Functional observers design for nonlinear discrete-time systems with interval time-varying delays

Yali Dong, Laijun Chen, Shengwei Mei (2019)

Kybernetika

This paper is concerned with the functional observer design for a class of Multi-Input Multi-Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov-Krasovskii functional approach, we design the parameters of the delay-dependent observer. We establish the sufficient conditions to guarantee the exponential stability of functional observer error system. In addition, for design purposes, delay-dependent sufficient conditions are proposed in terms of matrix inequalities...

Further results on robust fuzzy dynamic systems with LMI 𝓓-stability constraints

Wudhichai Assawinchaichote (2014)

International Journal of Applied Mathematics and Computer Science

This paper examines the problem of designing a robust fuzzy controller with -stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust fuzzy controller that guarantees (i) the ₂-gain of the mapping from the exogenous input noise to the...

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Fusion based analysis of ophthalmologic image data

Jiří Jan, Radim Kolář, Libor Kubečka, Jan Odstrčilík, Jiří Gazárek (2011)

Kybernetika

The paper presents an overview of image analysis activities of the Brno DAR group in the medical application area of retinal imaging. Particularly, illumination correction and SNR enhancement by registered averaging as preprocessing steps are briefly described; further mono- and multimodal registration methods developed for specific types of ophthalmological images, and methods for segmentation of optical disc, retinal vessel tree and autofluorescence areas are presented. Finally, the designed methods...

Currently displaying 81 – 100 of 117