Interpolation theory, loop groups and instantons.
Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer...
When invading the tissue, malignant tumour cells (i.e. cancer cells) need to detach from neighbouring cells, degrade the basement membrane, and migrate through the extracellular matrix. These processes require loss of cell-cell adhesion and enhancement of cell-matrix adhesion. In this paper we present a mathematical model of an intracellular pathway for the interactions between a cancer cell and the extracellular matrix. Cancer cells use similar...
It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system....
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
This paper presents a parametrization of a feed-forward control based on structures of subspaces for a non-interacting regulation. With advances in technological development, robotics is increasingly being used in many industrial sectors, including medical applications (e. g., micro-manipulation of internal tissues or laparoscopy). Typical problems in robotics and general mechanisms may be mathematically formalized and analyzed, resulting in outcomes so general that it is possible to speak of structural...
The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...
The problem of invariant output tracking is considered: given a control system admitting a symmetry group G, design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of G. Invariant output errors are defined as a set of scalar invariants of G; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the...
We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method....
We investigate Korteweg-de Vries-Burgers (KdVB) equation, where the dissipation and dispersion coefficients are unknown, but their lower bounds are known. First, we establish dynamic boundary controls with update laws to globally exponentially stabilize this uncertain system. Secondly, we demonstrate that the dynamic boundary control design is suboptimal to a meaningful functional after some minor modifications of the dynamic boundary controls. In addition, we also consider dynamic boundary controls...