The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2003)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a L Q control problem associated with the linearized equation.

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control problem associated with the linearized equation.

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions

Antonios Armaou, Panagiotis Christofides (2001)

International Journal of Applied Mathematics and Computer Science

This article presents a methodology for the synthesis of finite-dimensional nonlinear output feedback controllers for nonlinear parabolic partial differential equation (PDE) systems with time-dependent spatial domains. Initially, the nonlinear parabolic PDE system is expressed with respect to an appropriate time-invariant spatial coordinate, and a representative (with respect to different initial conditions and input perturbations) ensemble of solutions of the resulting time-varying PDE system is...

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Currently displaying 1 – 10 of 10

Page 1