Continuity and maximum principle for potentials of signed measures

Ivan Netuka

Czechoslovak Mathematical Journal (1975)

  • Volume: 25, Issue: 2, page 309-316
  • ISSN: 0011-4642

How to cite

top

Netuka, Ivan. "Continuity and maximum principle for potentials of signed measures." Czechoslovak Mathematical Journal 25.2 (1975): 309-316. <http://eudml.org/doc/12868>.

@article{Netuka1975,
author = {Netuka, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {2},
pages = {309-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuity and maximum principle for potentials of signed measures},
url = {http://eudml.org/doc/12868},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Netuka, Ivan
TI - Continuity and maximum principle for potentials of signed measures
JO - Czechoslovak Mathematical Journal
PY - 1975
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 25
IS - 2
SP - 309
EP - 316
LA - eng
UR - http://eudml.org/doc/12868
ER -

References

top
  1. M. G. Arsove, 10.1090/S0002-9947-1953-0059416-3, Trans. Amer. Math. Soc. 75 (1953), 327-365. (1953) Zbl0052.33301MR0059416DOI10.1090/S0002-9947-1953-0059416-3
  2. H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer-Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
  3. N. Boboc, P. Mustaţä, Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Lecture Notes in Math. 68, Springer-Verlag, 1968. (1968) MR0241681
  4. M. Brelot, Sur l'allure des fonctions harmoniques et sousharmoniques à la frontière, Math. Nachr. 4 (1950-51), 298-307. (1950) MR0041989
  5. M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay 1967. (1967) Zbl0257.31001MR0259146
  6. C. Constantinescu, A. Cornea, Examples in the theory of harmonic spaces, In: Seminar über Potentialtheorie, p. 161 - 171, Lecture Notes in Math. 69, Springer-Verlag, Berlin, 1968. (1968) MR0237809
  7. С. Constantinescu, A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin, 1972. (1972) Zbl0248.31011MR0419799
  8. G. C. Evans, On potentials of positive mass I, Trans. Amer. Math. Soc. 37 (1935), 226-253. (1935) Zbl0011.21201MR1501785
  9. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Math. Sem. 3 (1935), 1 - 118. (1935) Zbl0013.06302
  10. В. Fuglede, Finely harmonie functions, Lecture Notes in Math. 289, Springer-Verlag, Berlin, 1972. (1972) 
  11. L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
  12. R.-M. Hervé, 10.5802/aif.125, Ann. Inst. Fourier 12 (1962), 415-571. (1962) MR0139756DOI10.5802/aif.125
  13. R.-M. Hervé, 10.5802/aif.214, Ann. Inst. Fourier 15 (1965), 215-224. (1965) MR0188471DOI10.5802/aif.214
  14. R.-M. Hervé, M. Hervé, 10.5802/aif.320, Ann. Inst. Fourier 19 (1969), 305-359. (1969) MR0261027DOI10.5802/aif.320
  15. J. Köhn, M. Sieveking, Reguläre und extremale Randpunkte in der Potentialtheorie, Rev. Roumaine Math. Pures Appl. 12 (1967), 1489-1502. (1967) MR0232960
  16. A. J. Maria, 10.1073/pnas.20.8.485, Proc. Nat. Acad. Sci. U.S.A. 20 (1934), 485-489. (1934) Zbl0009.35804DOI10.1073/pnas.20.8.485
  17. I. Netuka, Some properties of potentials of signed measures, Comment. Math. Univ. Carolinae 15 (1974), 573-575. (1974) Zbl0289.31009MR0352503
  18. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974. (1974) Zbl0278.26001MR0344043
  19. F. Vasilesco, Sur la continuité du potentiel à travers les masses et la démonstration d'un lemme de Kellog, C.R. Acad. Sci. Paris 200 (1935), 1173-1174. (1935) 

Citations in EuDML Documents

top
  1. Josef Král, A note on continuity principle in potential theory
  2. Wittmann, Rainer Wittmann, Rainer, A general continuity principle
  3. Dagmar Medková, Solution of the Robin problem for the Laplace equation
  4. Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
  5. Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
  6. Wolfhard Hansen, Harnack inequalities for Schrödinger operators
  7. Josef Král, Jiří Veselý, Sixty years of Ivan Netuka

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.