Continuity and maximum principle for potentials of signed measures
Czechoslovak Mathematical Journal (1975)
- Volume: 25, Issue: 2, page 309-316
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNetuka, Ivan. "Continuity and maximum principle for potentials of signed measures." Czechoslovak Mathematical Journal 25.2 (1975): 309-316. <http://eudml.org/doc/12868>.
@article{Netuka1975,
author = {Netuka, Ivan},
journal = {Czechoslovak Mathematical Journal},
language = {eng},
number = {2},
pages = {309-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuity and maximum principle for potentials of signed measures},
url = {http://eudml.org/doc/12868},
volume = {25},
year = {1975},
}
TY - JOUR
AU - Netuka, Ivan
TI - Continuity and maximum principle for potentials of signed measures
JO - Czechoslovak Mathematical Journal
PY - 1975
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 25
IS - 2
SP - 309
EP - 316
LA - eng
UR - http://eudml.org/doc/12868
ER -
References
top- M. G. Arsove, 10.1090/S0002-9947-1953-0059416-3, Trans. Amer. Math. Soc. 75 (1953), 327-365. (1953) Zbl0052.33301MR0059416DOI10.1090/S0002-9947-1953-0059416-3
- H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22, Springer-Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
- N. Boboc, P. Mustaţä, Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Lecture Notes in Math. 68, Springer-Verlag, 1968. (1968) MR0241681
- M. Brelot, Sur l'allure des fonctions harmoniques et sousharmoniques à la frontière, Math. Nachr. 4 (1950-51), 298-307. (1950) MR0041989
- M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, Bombay 1967. (1967) Zbl0257.31001MR0259146
- C. Constantinescu, A. Cornea, Examples in the theory of harmonic spaces, In: Seminar über Potentialtheorie, p. 161 - 171, Lecture Notes in Math. 69, Springer-Verlag, Berlin, 1968. (1968) MR0237809
- С. Constantinescu, A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin, 1972. (1972) Zbl0248.31011MR0419799
- G. C. Evans, On potentials of positive mass I, Trans. Amer. Math. Soc. 37 (1935), 226-253. (1935) Zbl0011.21201MR1501785
- O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Math. Sem. 3 (1935), 1 - 118. (1935) Zbl0013.06302
- В. Fuglede, Finely harmonie functions, Lecture Notes in Math. 289, Springer-Verlag, Berlin, 1972. (1972)
- L. L. Helms, Introduction to potential theory, Wiley-Interscience, New York, 1969. (1969) Zbl0188.17203MR0261018
- R.-M. Hervé, 10.5802/aif.125, Ann. Inst. Fourier 12 (1962), 415-571. (1962) MR0139756DOI10.5802/aif.125
- R.-M. Hervé, 10.5802/aif.214, Ann. Inst. Fourier 15 (1965), 215-224. (1965) MR0188471DOI10.5802/aif.214
- R.-M. Hervé, M. Hervé, 10.5802/aif.320, Ann. Inst. Fourier 19 (1969), 305-359. (1969) MR0261027DOI10.5802/aif.320
- J. Köhn, M. Sieveking, Reguläre und extremale Randpunkte in der Potentialtheorie, Rev. Roumaine Math. Pures Appl. 12 (1967), 1489-1502. (1967) MR0232960
- A. J. Maria, 10.1073/pnas.20.8.485, Proc. Nat. Acad. Sci. U.S.A. 20 (1934), 485-489. (1934) Zbl0009.35804DOI10.1073/pnas.20.8.485
- I. Netuka, Some properties of potentials of signed measures, Comment. Math. Univ. Carolinae 15 (1974), 573-575. (1974) Zbl0289.31009MR0352503
- W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974. (1974) Zbl0278.26001MR0344043
- F. Vasilesco, Sur la continuité du potentiel à travers les masses et la démonstration d'un lemme de Kellog, C.R. Acad. Sci. Paris 200 (1935), 1173-1174. (1935)
Citations in EuDML Documents
top- Josef Král, A note on continuity principle in potential theory
- Wittmann, Rainer Wittmann, Rainer, A general continuity principle
- Dagmar Medková, Solution of the Robin problem for the Laplace equation
- Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
- Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
- Wolfhard Hansen, Harnack inequalities for Schrödinger operators
- Josef Král, Jiří Veselý, Sixty years of Ivan Netuka
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.