Continuous extendibility of solutions of the Neumann problem for the Laplace equation

Dagmar Medková

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 377-395
  • ISSN: 0011-4642

Abstract

top
A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.

How to cite

top

Medková, Dagmar. "Continuous extendibility of solutions of the Neumann problem for the Laplace equation." Czechoslovak Mathematical Journal 53.2 (2003): 377-395. <http://eudml.org/doc/30784>.

@article{Medková2003,
abstract = {A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Neumann problem; Laplace equation; continuous extendibility; Neumann problem; Laplace equation; continuous extendibility},
language = {eng},
number = {2},
pages = {377-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous extendibility of solutions of the Neumann problem for the Laplace equation},
url = {http://eudml.org/doc/30784},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Medková, Dagmar
TI - Continuous extendibility of solutions of the Neumann problem for the Laplace equation
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 377
EP - 395
AB - A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.
LA - eng
KW - Neumann problem; Laplace equation; continuous extendibility; Neumann problem; Laplace equation; continuous extendibility
UR - http://eudml.org/doc/30784
ER -

References

top
  1. Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
  2. Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
  3. On the Dirichlet problem in the axiomatic theory of harmonic functions, Nagoya Math.  J. 23 (1963), 73–96. (1963) MR0162957
  4. Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1961. (1961) MR0106366
  5. Potential theory and function theory for irregular regions, Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) (1967) 
  6. Nuovi teoremi relativi alle misure ( r - 1 ) -dimensionali in uno spazi ad r   dimensioni, Ricerche Mat. 4 (1955), 95–113. (1955) MR0074499
  7. 10.1007/BF02545747, Acta Math. 141 (1978), 165–186. (1978) MR0501367DOI10.1007/BF02545747
  8. On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19 (1986), 60–64. (1986) MR0880678
  9. Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. 
  10. Solvability of a Boundary Integral Equation on a Polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. 
  11. Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points, Report LiTH-MAT-R-91-06. Linköping Univ., Sweden. 
  12. Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
  13. On the semi-Browder spectrum, Studia Math. 123 (1997), 1–13. (1997) MR1438302
  14. 10.1007/BF01350789, Math. Ann. 177 (1968), 133–142. (1968) MR0227445DOI10.1007/BF01350789
  15. Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
  16. 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
  17. Problème de Neumann faible avec condition frontière dans  L 1 , Séminaire de Théorie du Potentiel (Université Paris VI) No.  9, Lecture Notes in Mathematics Vol.  1393, Springer-Verlag, 1989, pp. 145–160. (1989) 
  18. Some examples concerning applicability of the Fredholm-Radon method in potential theory, Appl. Math. 31 (1986), 293–308. (1986) MR0854323
  19. Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
  20. 10.1023/A:1022818618177, Czechoslovak Math.  J. 47(122) (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
  21. 10.1023/A:1023267018214, Appl. Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
  22. 10.1023/A:1022447908645, Czechoslovak Math.  J. 48(123) (1998), 768–784. (1998) MR1658269DOI10.1023/A:1022447908645
  23. Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
  24. Generalized Robin problem in potential theory, Czechoslovak Math.  J. 22(97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
  25. An operator connected with the third boundary value problem in potential theory, Czechoslovak Math.  J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  26. The third boundary value problem in potential theory, Czechoslovak Math.  J. 22(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  27. Continuity and maximum principle for potentials of signed measures, Czechoslovak Math.  J. 25(100) (1975), 309–316. (1975) Zbl0309.31019MR0382690
  28. 10.1080/00036819208840093, Appl. Anal. 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
  29. 10.1080/00036819508840313, Appl. Anal. 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015DOI10.1080/00036819508840313
  30. The weak Dirichlet and Neumann problem for the Laplacian in  L q for bounded and exterior domains. Applications, Nonlinear analysis, function spaces and applications, Vol.  4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math.  119, 1990, pp. 180–223. (1990) MR1151436
  31. The Dirichlet problem for the Laplacian in bounded and unbounded domains, Pitman Research Notes in Mathematics Series  360, Addison Wesley Longman Inc., 1996. (1996) MR1454361
  32. Principles of Functional Analysis, Academic Press, 1973. (1973) MR0445263
  33. Weakly Differentiable Functions, Springer Verlag, 1989. (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.