Continuous extendibility of solutions of the Neumann problem for the Laplace equation
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 2, page 377-395
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "Continuous extendibility of solutions of the Neumann problem for the Laplace equation." Czechoslovak Mathematical Journal 53.2 (2003): 377-395. <http://eudml.org/doc/30784>.
@article{Medková2003,
abstract = {A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.},
author = {Medková, Dagmar},
journal = {Czechoslovak Mathematical Journal},
keywords = {Neumann problem; Laplace equation; continuous extendibility; Neumann problem; Laplace equation; continuous extendibility},
language = {eng},
number = {2},
pages = {377-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous extendibility of solutions of the Neumann problem for the Laplace equation},
url = {http://eudml.org/doc/30784},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Medková, Dagmar
TI - Continuous extendibility of solutions of the Neumann problem for the Laplace equation
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 377
EP - 395
AB - A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.
LA - eng
KW - Neumann problem; Laplace equation; continuous extendibility; Neumann problem; Laplace equation; continuous extendibility
UR - http://eudml.org/doc/30784
ER -
References
top- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
- On the Dirichlet problem in the axiomatic theory of harmonic functions, Nagoya Math. J. 23 (1963), 73–96. (1963) MR0162957
- Éléments de la théorie classique du potentiel, Centre de documentation universitaire, Paris, 1961. (1961) MR0106366
- Potential theory and function theory for irregular regions, Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) (1967)
- Nuovi teoremi relativi alle misure -dimensionali in uno spazi ad dimensioni, Ricerche Mat. 4 (1955), 95–113. (1955) MR0074499
- 10.1007/BF02545747, Acta Math. 141 (1978), 165–186. (1978) MR0501367DOI10.1007/BF02545747
- On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19 (1986), 60–64. (1986) MR0880678
- Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Solvability of a Boundary Integral Equation on a Polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points, Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.
- Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
- On the semi-Browder spectrum, Studia Math. 123 (1997), 1–13. (1997) MR1438302
- 10.1007/BF01350789, Math. Ann. 177 (1968), 133–142. (1968) MR0227445DOI10.1007/BF01350789
- Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
- Problème de Neumann faible avec condition frontière dans , Séminaire de Théorie du Potentiel (Université Paris VI) No. 9, Lecture Notes in Mathematics Vol. 1393, Springer-Verlag, 1989, pp. 145–160. (1989)
- Some examples concerning applicability of the Fredholm-Radon method in potential theory, Appl. Math. 31 (1986), 293–308. (1986) MR0854323
- Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (Russian) (1966) MR0214795
- 10.1023/A:1022818618177, Czechoslovak Math. J. 47(122) (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
- 10.1023/A:1023267018214, Appl. Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
- 10.1023/A:1022447908645, Czechoslovak Math. J. 48(123) (1998), 768–784. (1998) MR1658269DOI10.1023/A:1022447908645
- Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
- Generalized Robin problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 312-324. (1972) Zbl0241.31008MR0294673
- An operator connected with the third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- The third boundary value problem in potential theory, Czechoslovak Math. J. 22(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- Continuity and maximum principle for potentials of signed measures, Czechoslovak Math. J. 25(100) (1975), 309–316. (1975) Zbl0309.31019MR0382690
- 10.1080/00036819208840093, Appl. Anal. 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1080/00036819508840313, Appl. Anal. 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015DOI10.1080/00036819508840313
- The weak Dirichlet and Neumann problem for the Laplacian in for bounded and exterior domains. Applications, Nonlinear analysis, function spaces and applications, Vol. 4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math. 119, 1990, pp. 180–223. (1990) MR1151436
- The Dirichlet problem for the Laplacian in bounded and unbounded domains, Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996. (1996) MR1454361
- Principles of Functional Analysis, Academic Press, 1973. (1973) MR0445263
- Weakly Differentiable Functions, Springer Verlag, 1989. (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.