Sophus Lie and harmony in mathematical physics, on the 150th anniversary of his birth

Nail H. Ibragimov

Pokroky matematiky, fyziky a astronomie (1994)

  • Volume: 39, Issue: 4, page 192-208
  • ISSN: 0032-2423

How to cite

top

Ibragimov, Nail H.. "Sophus Lie a harmonie v matematické fyzice (k 150. výročí narození)." Pokroky matematiky, fyziky a astronomie 39.4 (1994): 192-208. <http://eudml.org/doc/37115>.

@article{Ibragimov1994,
author = {Ibragimov, Nail H.},
journal = {Pokroky matematiky, fyziky a astronomie},
keywords = {short biography; Lie algebras; differential equations},
language = {cze},
number = {4},
pages = {192-208},
publisher = {Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists},
title = {Sophus Lie a harmonie v matematické fyzice (k 150. výročí narození)},
url = {http://eudml.org/doc/37115},
volume = {39},
year = {1994},
}

TY - JOUR
AU - Ibragimov, Nail H.
TI - Sophus Lie a harmonie v matematické fyzice (k 150. výročí narození)
JO - Pokroky matematiky, fyziky a astronomie
PY - 1994
PB - Jednota českých matematiků a fyziků Union of Czech Mathematicians and Physicists
VL - 39
IS - 4
SP - 192
EP - 208
LA - cze
KW - short biography; Lie algebras; differential equations
UR - http://eudml.org/doc/37115
ER -

References

top
  1. Ames, W. F., Nonlinear Partial Differential Equations in Engineering,, Vols. I and II. New York: Academic Press (1965, 1972). (1965) Zbl0176.39701MR0210342
  2. Anderson, R. L., Ibragimov, N. H., Lie–Bäcklund Transformations in Applications, Philadelphia: SIAM (1979). (1979) Zbl0447.58001MR0520395
  3. Berest, Yu., Construction of fundamental solutions for Huygens equations as invariant solutions, Dokl. Akad. Nauk SSSR, 317 (4), 786–789 (1991). (1991) Zbl0789.35093MR1121582
  4. Bianchi, L., Lezioni sulla teoria dei gruppi continui finiti di transformazioni, Pisa: Spoerri (1918). (1918) Zbl46.0657.10
  5. Birkhoff, G., Hydrodynamics, Princeton, NJ: Princeton University Press (1950, 1960). (1950) Zbl0041.53903
  6. Bluman, G. W., Kumei, S., Symmetries and Differential Equations, New York: Springer-Verlag (1989). (1989) Zbl0698.35001MR1006433
  7. Hawkins, T., Jacobi and the birth of Lie’s theory of groups, Arch. History Exact Sciences 42 (3), 187–278 (1991). (1991) Zbl0767.01019MR1124967
  8. Hille, E., Functional Analysis and Semigroups, New York: Amer. Math. Soc. (1948), preface. (1948) Zbl0033.06501MR0025077
  9. Ibragimov, N. H., Transformation groups Applied to Mathematical Physics, Dordrecht: D. Reidel (1985). (1985) Zbl0558.53040MR0785566
  10. Ibragimov, N. H., Primer on the Group Analysis, Moscow: Znanie (1989). (1989) MR1063482
  11. Ibragimov, N. H., Essays in the Group Analysis of Ordinary Differential Equations, Moscow: Znanie (1991). (1991) MR1125762
  12. Ibragimov, N. H., Group analysis of ordinary differential equations and new observations in mathematical physics, Uspechi Mat. Nauk, to appear. Zbl0848.34006MR1279026
  13. Klein, F., Theorie der Transformationsgruppen B. III, Pervoe prisuzhdenie premii N. I. Lobachevskogo, 22 okt. 1897 goda, Kazan: Tipo-litografiya Imperatorskogo Universiteta (1898), pp. 10–28. (1898) 
  14. Laplace, P. S., Mécanique céleste, T. I. Livre 2, Chap. III (1799). (1799) 
  15. Lie, S., Über die Integration durch bestimmte Integrale von einer Klasse linearer partieller Differentialgleichungen, Arch. for. Math. VI (1881). (1881) 
  16. Lie, S., Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x , y , die eine Gruppe von Transformationen gestatten, Arch. Math. VIII, 187–453 (1883). (1883) Zbl15.0751.03
  17. Lie, S., Theorie der Transformationsgruppen, Bd. 1. (Bearbeitet unter Mitwirkung von F. Engel), Leipzig: B. G. Teubner (1888). (1888) Zbl21.0356.02
  18. Lie, S., Die infinitesimalen Berührungstransformationen der Mechanik, Leipz. Ber. (1889). (1889) 
  19. Lie, S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen (Bearbeitet und herausgegeben von Dr. G. Scheffers), Leipzig: B. G. Teubner (1891). (1891) Zbl23.0351.01
  20. Lie, S., Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordnung, Leipz. Ber. I, 53–128 (1895). (1895) Zbl26.0402.01
  21. Lie, S., Gesammelte Abhandlungen, Bd. 1–6, Leipzig–Oslo. 
  22. Noether, M., Sophus Lie, Math. Annalen 53, 1–4 (1990). (1990) MR2348319
  23. Olver, P. J., Applications of Lie groups to Differential Equations, New York: Springer-Verlag (1986). (1986) Zbl0588.22001MR0836734
  24. Ovsjanikov, L. V., Group properties of differential equations, Novosibirsk: USSR Academy of Science, Siberian Branch (1962). (1962) 
  25. Ovsjanikov, L. V., Group Analysis of Differential Equations, Boston: Academic Press (1982). (1982) MR0668703
  26. Petrov, A. Z., Einstein Spaces, Oxford: Pergamon Press (1969). (1969) Zbl0174.28305MR0244912
  27. Polischuk, E. M., Sophus Lie, Leningrad: Nauka (1983). (1983) MR0742142
  28. Puknachev, V. V., Invariant solutions of Navier–Stokes equations describing free-boundary motions, Dokl. Akad. Nauk SSSR 20 (2), 302–305 (1972). (1972) 
  29. Purkert, W., Zum Verhältnis von Sophus Lie und Friedrich Engel, Wiss. Zeitschr. Ernst-Moritz-Arndt-Universität Greifswald, Math.-Naturwiss. Reihe XXXIII, Heft 1–2, 29–34 (1984). (1984) Zbl0558.01020MR0836342
  30. Riemann, G. F. B., Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. K. Ges. Wiss. Göttingen 8 (1860). (1860) 
  31. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, 4th ed, New York: Academic Press (1959). (1959) Zbl0121.18504MR0108122
  32. Stephani, H., Differential Equations: Their Solution Using Symmetries, Cambridge: Cambridge University Press (1989). (1989) Zbl0704.34001MR1041800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.