Propagation of singularities for operators with multiple involutive characteristics

Johannes Sjöstrand

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 1, page 141-155
  • ISSN: 0373-0956

Abstract

top
Let P be a classical pseudodifferential operator of order m on a paracompact C manifold X . Let p m be the principal symbol and assume that Σ = p m - 1 ( 0 ) is an involutive C sub-manifold of T * X 0 , satisfying a certain transversality condition. We assume that p m vanishes exactly to order M on Σ and that the derivatives of order M satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when M = 2 ). Suppose that a Levi condition is valid for the lower order symbols. If u 𝒟 ' ( X ) , P u C ( X ) , then W F ( u ) is a union of (bicharacteristic leaves), defined in the paper).

How to cite

top

Sjöstrand, Johannes. "Propagation of singularities for operators with multiple involutive characteristics." Annales de l'institut Fourier 26.1 (1976): 141-155. <http://eudml.org/doc/74263>.

@article{Sjöstrand1976,
abstract = {Let $P$ be a classical pseudodifferential operator of order $m$ on a paracompact $C^\infty $ manifold $X$. Let $p_m$ be the principal symbol and assume that $\Sigma =p^\{-1\}_m(0)$ is an involutive $C^\infty $ sub-manifold of $T^*X\setminus 0$, satisfying a certain transversality condition. We assume that $p_m$ vanishes exactly to order $M$ on $\Sigma $ and that the derivatives of order $M$ satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when $M=2$). Suppose that a Levi condition is valid for the lower order symbols. If $u\in \{\cal D\}^\{\prime \}(X)$, $Pu\in C^\infty (X)$, then $WF(u)$ is a union of (bicharacteristic leaves), defined in the paper).},
author = {Sjöstrand, Johannes},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {141-155},
publisher = {Association des Annales de l'Institut Fourier},
title = {Propagation of singularities for operators with multiple involutive characteristics},
url = {http://eudml.org/doc/74263},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Propagation of singularities for operators with multiple involutive characteristics
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 1
SP - 141
EP - 155
AB - Let $P$ be a classical pseudodifferential operator of order $m$ on a paracompact $C^\infty $ manifold $X$. Let $p_m$ be the principal symbol and assume that $\Sigma =p^{-1}_m(0)$ is an involutive $C^\infty $ sub-manifold of $T^*X\setminus 0$, satisfying a certain transversality condition. We assume that $p_m$ vanishes exactly to order $M$ on $\Sigma $ and that the derivatives of order $M$ satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when $M=2$). Suppose that a Levi condition is valid for the lower order symbols. If $u\in {\cal D}^{\prime }(X)$, $Pu\in C^\infty (X)$, then $WF(u)$ is a union of (bicharacteristic leaves), defined in the paper).
LA - eng
UR - http://eudml.org/doc/74263
ER -

References

top
  1. [1] J.M. BONY and P. SCHAPIRA, Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles, to appear. Zbl0312.35064
  2. [2] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
  3. [3] L. BOUTET DE MONVEL, Propagation des singularités des solutions d'équations analogues à l'équation de Schrödinger, Fourier Integral Operators and Partial Differential Equations, Springer Lecture Notes, 459, 1-14. Zbl0305.35088MR54 #11409
  4. [4] J. CHAZARAIN, Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résolubilité locale, Ann. Inst. Fourier, Grenoble, 24,1 (1974), 203-223. Zbl0274.35007MR52 #11338b
  5. [5] J.J. DUISTERMAAT, On Carleman estimates for pseudo-differential operators, Inv. Math., 17, (1972), 31-43. Zbl0242.35069MR48 #958
  6. [6] J.J. DUISTERMAAT and L. HÖRMANDER, Fourier integral operators II, Acta Math., 128 (1972), 183-269. Zbl0232.47055MR52 #9300
  7. [7] L. HÖRMANDER, Linear partial differential operators, Grundl. Math. Wiss., 116, Springer Verlag, 1963. Zbl0108.09301MR28 #4221
  8. [8] L. HÖRMANDER, Pseudodifferential operators and non-elliptic-boundary problems, Ann. of Math., 83 (1966), 129-209. Zbl0132.07402
  9. [9] R. LASCAR, Propagation des singularités des solutions d'équations quasi-homogènes, Thèse de 3ème cycle, Université Paris VI. Zbl0349.35079
  10. [10] L. NIRENBERG, Lectures on linear partial differential equations, Proc. Reg. Conf. at Texas Tech., May 1972, Conf. Board Math. Sci. A.M.S. 17. Zbl0267.35001MR56 #9048
  11. [11] J. SJÖSTRAND, Operators of principal type with interior boundary conditions, Acta Math., 130 (1973), 1-51. Zbl0253.35076MR55 #9174
  12. [12] J. SJÖSTRAND, Parametrics for pseudodifferential operators with multiple characteristics, Ark. Mat., 12 (1974), 85-130. Zbl0317.35076
  13. [13] A. UNTERBERGER, Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier, Grenoble, 21, 2 (1971), 85-128. Zbl0205.43104MR58 #29043
  14. [14] A. UNTERBERGER, Ouverts stablement convexes par rapport à un opérateur differentiel, Ann. Inst. Fourier, Grenoble, 22,3 (1973), 269-290. Zbl0228.35014MR49 #11022

Citations in EuDML Documents

top
  1. Alain Grigis, Propagation des singularités sur des groupes de Lie nilpotents
  2. J. C. Nosmas, Paramétrix du problème de Cauchy pour une classe de systèmes hyperboliques à caractéristiques réelles involutives de multiplicité variable
  3. D. Tartakoff, Hypoellipticité analytique pour des opérateurs à caractéristiques multiples - Démonstration élémentaire
  4. G. Lebeau, Deuxième microlocalisation à croissance
  5. A. Grigis, Propagation des singularités au bord d’ouverts de C n
  6. Alain Grigis, Propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques doubles
  7. A. Grigis, Propagation des singularités sur des groupes de Lie nilpotents de rang 2 . II
  8. A. Grigis, Propagation des singularités le long de courbes microbicaractéristiques pour des opérateurs pseudodifférentiels à caractéristiques doubles. I

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.