Propagation of singularities for operators with multiple involutive characteristics
Annales de l'institut Fourier (1976)
- Volume: 26, Issue: 1, page 141-155
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSjöstrand, Johannes. "Propagation of singularities for operators with multiple involutive characteristics." Annales de l'institut Fourier 26.1 (1976): 141-155. <http://eudml.org/doc/74263>.
@article{Sjöstrand1976,
abstract = {Let $P$ be a classical pseudodifferential operator of order $m$ on a paracompact $C^\infty $ manifold $X$. Let $p_m$ be the principal symbol and assume that $\Sigma =p^\{-1\}_m(0)$ is an involutive $C^\infty $ sub-manifold of $T^*X\setminus 0$, satisfying a certain transversality condition. We assume that $p_m$ vanishes exactly to order $M$ on $\Sigma $ and that the derivatives of order $M$ satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when $M=2$). Suppose that a Levi condition is valid for the lower order symbols. If $u\in \{\cal D\}^\{\prime \}(X)$, $Pu\in C^\infty (X)$, then $WF(u)$ is a union of (bicharacteristic leaves), defined in the paper).},
author = {Sjöstrand, Johannes},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {1},
pages = {141-155},
publisher = {Association des Annales de l'Institut Fourier},
title = {Propagation of singularities for operators with multiple involutive characteristics},
url = {http://eudml.org/doc/74263},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Sjöstrand, Johannes
TI - Propagation of singularities for operators with multiple involutive characteristics
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 1
SP - 141
EP - 155
AB - Let $P$ be a classical pseudodifferential operator of order $m$ on a paracompact $C^\infty $ manifold $X$. Let $p_m$ be the principal symbol and assume that $\Sigma =p^{-1}_m(0)$ is an involutive $C^\infty $ sub-manifold of $T^*X\setminus 0$, satisfying a certain transversality condition. We assume that $p_m$ vanishes exactly to order $M$ on $\Sigma $ and that the derivatives of order $M$ satisfy a certain condition, inspired from the Calderòn uniqueness theorem (usually empty when $M=2$). Suppose that a Levi condition is valid for the lower order symbols. If $u\in {\cal D}^{\prime }(X)$, $Pu\in C^\infty (X)$, then $WF(u)$ is a union of (bicharacteristic leaves), defined in the paper).
LA - eng
UR - http://eudml.org/doc/74263
ER -
References
top- [1] J.M. BONY and P. SCHAPIRA, Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles, to appear. Zbl0312.35064
- [2] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
- [3] L. BOUTET DE MONVEL, Propagation des singularités des solutions d'équations analogues à l'équation de Schrödinger, Fourier Integral Operators and Partial Differential Equations, Springer Lecture Notes, 459, 1-14. Zbl0305.35088MR54 #11409
- [4] J. CHAZARAIN, Propagation des singularités pour une classe d'opérateurs à caractéristiques multiples et résolubilité locale, Ann. Inst. Fourier, Grenoble, 24,1 (1974), 203-223. Zbl0274.35007MR52 #11338b
- [5] J.J. DUISTERMAAT, On Carleman estimates for pseudo-differential operators, Inv. Math., 17, (1972), 31-43. Zbl0242.35069MR48 #958
- [6] J.J. DUISTERMAAT and L. HÖRMANDER, Fourier integral operators II, Acta Math., 128 (1972), 183-269. Zbl0232.47055MR52 #9300
- [7] L. HÖRMANDER, Linear partial differential operators, Grundl. Math. Wiss., 116, Springer Verlag, 1963. Zbl0108.09301MR28 #4221
- [8] L. HÖRMANDER, Pseudodifferential operators and non-elliptic-boundary problems, Ann. of Math., 83 (1966), 129-209. Zbl0132.07402
- [9] R. LASCAR, Propagation des singularités des solutions d'équations quasi-homogènes, Thèse de 3ème cycle, Université Paris VI. Zbl0349.35079
- [10] L. NIRENBERG, Lectures on linear partial differential equations, Proc. Reg. Conf. at Texas Tech., May 1972, Conf. Board Math. Sci. A.M.S. 17. Zbl0267.35001MR56 #9048
- [11] J. SJÖSTRAND, Operators of principal type with interior boundary conditions, Acta Math., 130 (1973), 1-51. Zbl0253.35076MR55 #9174
- [12] J. SJÖSTRAND, Parametrics for pseudodifferential operators with multiple characteristics, Ark. Mat., 12 (1974), 85-130. Zbl0317.35076
- [13] A. UNTERBERGER, Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier, Grenoble, 21, 2 (1971), 85-128. Zbl0205.43104MR58 #29043
- [14] A. UNTERBERGER, Ouverts stablement convexes par rapport à un opérateur differentiel, Ann. Inst. Fourier, Grenoble, 22,3 (1973), 269-290. Zbl0228.35014MR49 #11022
Citations in EuDML Documents
top- Alain Grigis, Propagation des singularités sur des groupes de Lie nilpotents
- J. C. Nosmas, Paramétrix du problème de Cauchy pour une classe de systèmes hyperboliques à caractéristiques réelles involutives de multiplicité variable
- D. Tartakoff, Hypoellipticité analytique pour des opérateurs à caractéristiques multiples - Démonstration élémentaire
- G. Lebeau, Deuxième microlocalisation à croissance
- A. Grigis, Propagation des singularités au bord d’ouverts de
- Alain Grigis, Propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques doubles
- A. Grigis, Propagation des singularités sur des groupes de Lie nilpotents de rang . II
- A. Grigis, Propagation des singularités le long de courbes microbicaractéristiques pour des opérateurs pseudodifférentiels à caractéristiques doubles. I
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.