An ill posed Cauchy problem for a hyperbolic system in two space dimensions

Alberto Bressan

Rendiconti del Seminario Matematico della Università di Padova (2003)

  • Volume: 110, page 103-117
  • ISSN: 0041-8994

How to cite

top

Bressan, Alberto. "An ill posed Cauchy problem for a hyperbolic system in two space dimensions." Rendiconti del Seminario Matematico della Università di Padova 110 (2003): 103-117. <http://eudml.org/doc/108609>.

@article{Bressan2003,
author = {Bressan, Alberto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {103-117},
publisher = {Seminario Matematico of the University of Padua},
title = {An ill posed Cauchy problem for a hyperbolic system in two space dimensions},
url = {http://eudml.org/doc/108609},
volume = {110},
year = {2003},
}

TY - JOUR
AU - Bressan, Alberto
TI - An ill posed Cauchy problem for a hyperbolic system in two space dimensions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2003
PB - Seminario Matematico of the University of Padua
VL - 110
SP - 103
EP - 117
LA - eng
UR - http://eudml.org/doc/108609
ER -

References

top
  1. [1] A. BRESSAN, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, 2000. Zbl0997.35002MR1816648
  2. [2] C. DAFERMOS, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin 1999. Zbl0940.35002MR1763936
  3. [3] R. DIPERNA - P. L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-517. Zbl0696.34049MR1022305
  4. [4] S. KRUZHKOV, First-order quasilinear equations with several space variables, Math. USSR Sbornik, 10 (1970), pp. 217-273. Zbl0215.16203
  5. [5] E. Y. PANOV, On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws, Sbornik: Mathematics, 191 (2000), pp. 121-150. Zbl0954.35107MR1753495
  6. [6] D. SERRE, Systems of Conservation Laws I, II, Cambridge University Press, 2000. Zbl0936.35001MR1775057

Citations in EuDML Documents

top
  1. Alberto Bressan, A lemma and a conjecture on the cost of rearrangements
  2. Luigi Ambrosio, Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
  3. Luigi Ambrosio, Transport equation and Cauchy problem for B V vector fields and applications
  4. Luigi Ambrosio, Gianluca Crippa, Stefania Maniglia, Traces and fine properties of a B D class of vector fields and applications
  5. Gianluca Crippa, The Ordinary Differential Equation with non-Lipschitz Vector Fields
  6. Alberto Bressan, Some remarks on multidimensional systems of conservation laws
  7. Luigi Ambrosio, The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.