Structure of three interval exchange transformations I: an arithmetic study
Sébastien Ferenczi[1]; Charles Holton[2]; Luca Q. Zamboni[3]
- [1] Laboratoire de Mathématiques et Physique Théorique, CNRS, UPRES-A 6083, Parc de Grandmont, 37200 Tours (France)
- [2] University of California, Department of Mathematics, Berkeley CA 94720-3840 (USA)
- [3] University of North Texas, Department of Mathematics, Denton TX 76203-5116 (USA)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 861-901
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFerenczi, Sébastien, Holton, Charles, and Zamboni, Luca Q.. "Structure of three interval exchange transformations I: an arithmetic study." Annales de l’institut Fourier 51.4 (2001): 861-901. <http://eudml.org/doc/115939>.
@article{Ferenczi2001,
abstract = {In this paper we describe a $2$-dimensional generalization of the Euclidean algorithm
which stems from the dynamics of $3$-interval exchange transformations. We investigate
various diophantine properties of the algorithm including the quality of simultaneous
approximations. We show it verifies the following Lagrange type theorem: the algorithm is
eventually periodic if and only if the parameters lie in the same quadratic extension of
$\{\mathbb \{Q\}\}.$},
affiliation = {Laboratoire de Mathématiques et Physique Théorique, CNRS, UPRES-A 6083, Parc de Grandmont, 37200 Tours (France); University of California, Department of Mathematics, Berkeley CA 94720-3840 (USA); University of North Texas, Department of Mathematics, Denton TX 76203-5116 (USA)},
author = {Ferenczi, Sébastien, Holton, Charles, Zamboni, Luca Q.},
journal = {Annales de l’institut Fourier},
keywords = {Generalized continued fraction; interval exchange transformations; generalized Gauss maps; generalized continued fraction; negative slope algorithm},
language = {eng},
number = {4},
pages = {861-901},
publisher = {Association des Annales de l'Institut Fourier},
title = {Structure of three interval exchange transformations I: an arithmetic study},
url = {http://eudml.org/doc/115939},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Ferenczi, Sébastien
AU - Holton, Charles
AU - Zamboni, Luca Q.
TI - Structure of three interval exchange transformations I: an arithmetic study
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 861
EP - 901
AB - In this paper we describe a $2$-dimensional generalization of the Euclidean algorithm
which stems from the dynamics of $3$-interval exchange transformations. We investigate
various diophantine properties of the algorithm including the quality of simultaneous
approximations. We show it verifies the following Lagrange type theorem: the algorithm is
eventually periodic if and only if the parameters lie in the same quadratic extension of
${\mathbb {Q}}.$
LA - eng
KW - Generalized continued fraction; interval exchange transformations; generalized Gauss maps; generalized continued fraction; negative slope algorithm
UR - http://eudml.org/doc/115939
ER -
References
top- J. Aaronson, M. Keane, The visits to zero of some deterministic random walks, Proc. London Math. Soc. 44 (1982), 535-553 Zbl0489.60006MR656248
- V.I. Arnold, A-graded algebras and continued fractions, Comm. Pure Applied Math. XLII (1989), 993-1000 Zbl0692.16012MR1008799
- P. Arnoux, Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore (in French), Bull. Soc. Math. France 116 (1988), 489-500 Zbl0703.58045MR1005392
- P. Arnoux, V. Berthe, S. Ito, Discrete planes, -actions, Jacobi-Perron algorithm and substitutions, (1999) Zbl1017.11006
- P. Arnoux, G. Rauzy, Représentation géométrique de suites de complexité , Bull. Soc. Math. France 119 (1991), 199-215 Zbl0789.28011MR1116845
- L. Bernstein, The Jacobi-Perron algorithm; its theory and applications, no 207 (1971), Springer-Verlag Zbl0213.05201MR285478
- V. Berthe, L. Vuillon, Tilings and rotations: a two-dimensional generalization of Sturmian sequences, Discrete Math. 223 (2000), 27-53 Zbl0970.68124MR1782038
- M. Boshernitzan, C. Carroll, An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math. 72 (1997), 21-44 Zbl0931.28013MR1482988
- A.J. Brentjes, Multi-dimensional continued fraction algorithms, Math. Centre Tracts, Amsterdam 145 (1981) Zbl0471.10024MR638474
- E. Burger, On simultaneous diophantine approximation in the vector space , J. Number Theory 82 (2000), 12-24 Zbl0985.11031MR1755151
- E. Burger, On real quadratic number fields and simultaneous diophantine approximation, Monats. Math. 128 (1999), 201-209 Zbl0971.11039MR1719356
- J. Cassaigne, S. Ferenczi, L.Q. Zamboni, Imbalances in Arnoux-Rauzy sequences, Ann. Inst. Fourier 50 (2000), 1265-1276 Zbl1004.37008MR1799745
- N. Chekhova, P. Hubert, A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de tribonacci, J. Théorie des Nombres de Bordeaux (2001) Zbl1038.37010MR1879664
- E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1972), 138-153 Zbl0256.54028MR322838
- A. del Junco, A family of counterexamples in ergodic theory, Israël J. Math. 44 (1983), 160-188 Zbl0522.28012MR693358
- S. Ferenczi, C. Holton, L.Q. Zamboni, Structure of three-interval exchange transformations II: a combinatorial description of the trajectories, (2001) Zbl1130.37324MR1981920
- S. Ferenczi, C. Holton, L.Q. Zamboni, Structure of three-interval exchange transformations III: ergodic and spectral properties, (2001) Zbl1094.37005MR2110326
- T. Garrity, On periodic sequences for algebraic numbers, (1999) Zbl1015.11031
- Y. Hara-Mimachi, S. Ito, A characterization of real quadratic numbers by diophantine algorithms, Tokyo J. Math. 14 (1991), 251-267 Zbl0751.11034MR1138165
- G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Oxford University Press Zbl0058.03301MR67125
- C. Hermite, Letter to C.D.J. Jacobi, J. reine. angew Math. 40 (1839)
- A. Hurwitz, Über eine besondere Art der Kettenbruchentwicklung reeller Grössen, Acta Math. 12 (1889), 367-405
- A.B. Katok, A.M. Stepin, Approximations in ergodic theory, Usp. Math. Nauk. 22 (1967), 81-106 Zbl0172.07202MR219697
- E. Korkina, La périodicité des fractions continues multidimensionnelles, C.R. Acad. Sci. Paris, Série I 319 (1994), 777-780 Zbl0836.11023MR1300940
- C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39 Zbl0721.11029MR1093246
- J.L. Lagrange, Sur la solution des problèmes indéterminés du second degré, Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin 23 (1769)
- H. Minkowski, Ein Kriterium für algebraishcen Zahlen, Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen Mathematisch-physikalische Klasse, 293-315
- H. Minkowski, Über periodische Approximationen algebraischer Zahlen, Acta Math. 26, 333-351
- M. Morse, G.A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866 Zbl0019.33502MR1507944
- M. Morse, G.A. Hedlund, Symbolic dynamics II: Sturmian sequences, Amer. J. Math. 62 (1940), 1-42 Zbl0022.34003MR745
- O. Perron, Die Lehre von den Kettenbrüchen (in German), (1929), Teubner Verlag Zbl55.0262.09
- G. Rauzy, Une généralization du développement en fraction continue, Séminaire de Théorie des Nombres, Paris (1975-1977) Zbl0369.28015
- G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith. 34 (1979), 315-328 Zbl0414.28018MR543205
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
- R. RISLEY, L.Q. ZAMBONI, A generalization of Sturmian sequences; combinatorial properties and transcendence, Acta Arith. 95 (2000), 167-184 Zbl0953.11007MR1785413
- F. Schweiger, The metrical theory of Jacobi-Perron algorithm, 334 (1973), Springer-Verlag, Berlin Zbl0287.10041MR345925
- F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, (1995), Oxford Science Publications Zbl0819.11027
- C. Szekeres, Multidimensional continued fractions, Ann. Univ. Sci. Budapest Sect. Math. 13 (1970), 113-140 Zbl0214.30101MR313198
- W. Veech, Interval exchange transformations, J. Anal. Math. 33 (1978), 222-278 Zbl0455.28006MR516048
- W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982), 201-242 Zbl0486.28014MR644019
- W. Veech, The metric theory of interval exchange transformations I, II, III, Amer. J. Math. 106 (1984), 1331-1421 Zbl0631.28006MR765582
- N. Wozny, L.Q. Zamboni, Frequencies of factors in Arnoux-Rauzy sequences, Acta Arith. 96 (2001), 261-278 Zbl0973.11030MR1814281
- L.Q. Zamboni, Une généralisation du théorème de Lagrange sur le développement en fraction continue, C.R. Acad. Sci. Paris, Série I 327 (1998), 527-530 Zbl1039.11500MR1647296
- F. Klein, Sur une représentation géométrique du développement en fraction continue ordinaire, Nouv. Ann. Math. 15, 321-331
- A.B. Katok, A.M. Stepin, Approximations in ergodic theory, Russian Math. Surveys 22 (1967), 76-102 Zbl0172.07202MR219697
Citations in EuDML Documents
top- Louis-Sébastien Guimond, Zuzana Masáková, Edita Pelantová, Combinatorial properties of infinite words associated with cut-and-project sequences
- Sébastien Ferenczi, Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations
- Sébastien Ferenczi, A generalization of the self-dual induction to every interval exchange transformation
- Petr Ambrož, Zuzana Masáková, Edita Pelantová, Morphisms fixing words associated with exchange of three intervals
- Amy Glen, Jacques Justin, Episturmian words: a survey
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.