Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems.
Inventiones mathematicae (1985)
- Volume: 81, page 155-188
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topHofer, H., and Ekeland, I.. "Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems.." Inventiones mathematicae 81 (1985): 155-188. <http://eudml.org/doc/143251>.
@article{Hofer1985,
author = {Hofer, H., Ekeland, I.},
journal = {Inventiones mathematicae},
keywords = {periodic solution; T-periodic solution; convex autonomous Hamiltonian systems; critical points of mountain pass type; minimal period},
pages = {155-188},
title = {Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems.},
url = {http://eudml.org/doc/143251},
volume = {81},
year = {1985},
}
TY - JOUR
AU - Hofer, H.
AU - Ekeland, I.
TI - Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems.
JO - Inventiones mathematicae
PY - 1985
VL - 81
SP - 155
EP - 188
KW - periodic solution; T-periodic solution; convex autonomous Hamiltonian systems; critical points of mountain pass type; minimal period
UR - http://eudml.org/doc/143251
ER -
Citations in EuDML Documents
top- Gabriella Tarantello, Subharmonic solutions for hamiltonian systems via a pseudoindex theory
- Mario Girardi, Michele Matzeu, Periodic Solutions of Second Order Nonautonomous Systems with the Potentials Changing Sign
- M. Matzeu, M. Girardi, On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign
- Andrzej Szulkin, Morse theory and existence of periodic solutions of convex hamiltonian systems
- Mourad Benabas, Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
- Antonio Ambrosetti, Vittorio Coti Zelati, Solutions with minimal period for hamiltonian systems in a potential well
- Vittorio Coti Zelati, Ivar Ekeland, Pierre-Louis Lions, Index estimates and critical points of functionals not satisfying Palais-Smale
- Yiming Long, The minimal period problem of classical hamiltonian systems with even potentials
- Antonio Ambrosetti, Critical points and nonlinear variational problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.