An analysis of the convergence of mixed finite element methods

Michel Fortin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 4, page 341-354
  • ISSN: 0764-583X

How to cite

top

Fortin, Michel. "An analysis of the convergence of mixed finite element methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.4 (1977): 341-354. <http://eudml.org/doc/193306>.

@article{Fortin1977,
author = {Fortin, Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {4},
pages = {341-354},
publisher = {Dunod},
title = {An analysis of the convergence of mixed finite element methods},
url = {http://eudml.org/doc/193306},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Fortin, Michel
TI - An analysis of the convergence of mixed finite element methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 4
SP - 341
EP - 354
LA - eng
UR - http://eudml.org/doc/193306
ER -

References

top
  1. 1. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problem arising from langrangian multipliers, R.A.I.R.O., vol. 8, août 1974, 2, pp. 129-151. Zbl0338.90047MR365287
  2. 2. F. BREZZI and P. A. RAVIART, Mixed finite element methods for fourth order elliptic equations (to appear). Rapport interne No. 9, École polytechnique, Centre de Mathématiques Appliquées. Zbl0434.65085
  3. 3. M. CROUZEIX and P. A. RAVIART, Conforming and non conforming finite elements methods for solving the stationary Stoke equations, R.A.I.R.O., 3, 1974, pp. 33-76. Zbl0302.65087
  4. 4. M. FORTIN, Utilisation de la méthode des éléments finis en mécanique des fluides, CALCOLO, vol. XII, fasc. IV, pp. 405-441 and Vol. XII, fasc. 1, pp. 1-20. Zbl0351.76030MR421339
  5. 5. C. JOHNSON, On the convergence of a mixed finite element method for plate bending problems, Num. Math., vol. 21, 1973, pp. 43-62. Zbl0264.65070MR388807
  6. 6. J. T. ODEN, Some contributions to the mathematical theory of mixed finite element approximations, Tokyo Seminar on Finite Eléments, Tokyo, 1973. Zbl0374.65060
  7. 7. J. T. ODEN et J. N. REDDY, On mixed finite element approximations, Texas Institute or Computational Mechanics, The University of Texas at Austin, 1974. 
  8. 8. P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems (to appear). Zbl0362.65089
  9. 9. K. YOSIDA, Functional analysis, Springer Verlag 1965. 

Citations in EuDML Documents

top
  1. Vincent Heuveline, Friedhelm Schieweck, On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes
  2. Klaus Jürgen Bathe, Franco Brezzi, Stability of finite element mixed interpolations for contact problems
  3. P. Mons, G. Rogé, L’élément Q 1 -bulle/ Q 1
  4. D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau
  5. Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
  6. Jean-Luc Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling
  7. M. Bercovier, Perturbation of mixed variational problems. Application to mixed finite element methods
  8. T. Scapolla, A mixed finite element method for the biharmonic problem
  9. Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
  10. Gunar Matthies, Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.