Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens
Jacques Baranger; Hassan El Amri
- Volume: 25, Issue: 1, page 31-47
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaranger, Jacques, and El Amri, Hassan. "Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 31-47. <http://eudml.org/doc/193620>.
@article{Baranger1991,
author = {Baranger, Jacques, El Amri, Hassan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimators; mixed finite element approximation; quasi- Newtonian flows; self-adaptive mesh-refinement process},
language = {fre},
number = {1},
pages = {31-47},
publisher = {Dunod},
title = {Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens},
url = {http://eudml.org/doc/193620},
volume = {25},
year = {1991},
}
TY - JOUR
AU - Baranger, Jacques
AU - El Amri, Hassan
TI - Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 31
EP - 47
LA - fre
KW - a posteriori error estimators; mixed finite element approximation; quasi- Newtonian flows; self-adaptive mesh-refinement process
UR - http://eudml.org/doc/193620
ER -
References
top- E. ABDALASS [ 1987], Résolution Performante du Problème de Stokes par Mini-Élément, Maillage Auto-Adaptatifs et Méthodes Multigrilles Applications.Thèse de Doctorat, École Centrale de Lyon.
- E. ABDALASS, J. F. MAITRE & F. MUSY [ 1987], A finite element solution of Stokes problem with an adaptive procedure, lst ICIAM Paris. Zbl0616.65104
- 0 I. BABUSKA & W. C. RHEINBOLTD [ 1978] a), Error Estimates for Adaptative Finite Element Computations. SIAM J. Numer. Anal. Vol. 15, n°4. Zbl0398.65069MR483395
- I. BABUSKA & W. C. RHEINBOLTD [ 1978] b), A Posteriori Error Estimates for the Finite Element Method. Int. J. Numer. Meth. Engng., 12, 1597-1615. Zbl0396.65068
- I. BABUSKA & W. C. RHEINBOLTD [ 1979], Analysis of Optimal Finite Element Meshes in R. Math. of Computation, 33, 435-463. Zbl0431.65055MR521270
- R. E. BANK [ 1986], Analysis of a Local a posteriori Error Estimate for Elliptic Equations. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. MR879445
- R. E. BANK & A. H. SHERMAN [ 1980], The use of Adaptive Grid Refinement for Badly Behaved Elliptic Partial Differential Equations. Math, and Computer XXII, pp. 18-24. Zbl0434.35008
- J. BARANGER & H. EL AMRI [ 1989], A posteriori error estimators for mixed finite element approximation of some quasi-newtonian flows. Invited lecture at the Workshop on innovative finite element methods. Rio de Janeiro Nov. 27 to Dec. lst. Zbl0770.76034
- J. BARANGER & K. NAJIB [ 1989], Analyse numérique d'une méthode d'éléments finis mixtes vitesse-pression pour le calcul d'écoulements quasi-newtoniens. 2e Congrès Franco-Chilien et Latino-Américain de mathématiques Appliquées, Santiago de Chile, décembre. Zbl0752.76006
- C. BERNARDI [ 1984], Optimal Finite Element Interpolation on Curved Domains. Publications du Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, n° 17. Zbl0678.65003
- P. G. CIARLET [ 1978], The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Volume 4, North-Holland. Zbl0383.65058MR520174
- Ph. CLÉMENT [ 1975], Approximation by Finite Element Functions using Local Regularization. R.A.I.R.O. n°2, pp. 77-84. Zbl0368.65008MR400739
- P. GEORGET [ 1985], Contribution à l'étude des équations de Stokes à viscosité variable. Thèse de Doctorat. Université de Lyon I.
- V. GIRAULT, P. A. RAVIART [ 1986], Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Amsterdam, North-Holland. Zbl0585.65077MR851383
- R. GLOWINSKI, A. MARROCCO [ 1975], Sur l'approximation par éléments finis d'ordre 1 et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. R-2 R.A.I.R.O. Analyse Numérique, pp. 41-76. Zbl0368.65053MR388811
- K. NAJIB [ 1988], Analyse Numérique de Modèles d'Écoulements Quasi-Newtoniens. Thèse de Doctorat. Université de Lyon I.
- J. T. ODEN, L. DEMKOWICZ, Ph. DELVOO & T. STROUBOULIS [ 1986], Adaptive Methods for Problems in Solid and Fluid Mechanics. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. MR879442
- M. C. RIVARA [ 1984], Adaptive Multigrid Software for the Finite Element Method. PhD thesis University Leuven, 1984. Zbl0578.65112
- I. G. ROSENBERG & F. STENGER [ 1975], A lower bound on the angles of triangles constructed by bisecting the logest side. Math. Comp. 29, pp. 390-395, 1975 Zbl0302.65085MR375068
- B. SCHEURER [ 1977], Existence et approximation de points selles pour certains problèmes non linéaires. R.A.I.R.O., Volume 11, n°4, Analyse Numérique, pp. 369-400. Zbl0371.65025MR464014
- R. VERFÜRTH [ 1989], A posteriori error estimators for the Stokes equations. Numerische Mathematik. Volume 55, n°3, 1989, pp. 309-325. Zbl0674.65092MR993474
Citations in EuDML Documents
top- Roland Glowinski, Jacques Rappaz, Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology
- Roland Glowinski, Jacques Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology
- D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau
- Marco Picasso, Jacques Rappaz, Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
- Marco Picasso, Jacques Rappaz, Existence, and error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
- Weizhu Bao, John W. Barrett, A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
- Andrea Bonito, Philippe Clément, Marco Picasso, Finite element analysis of a simplified stochastic Hookean dumbbells model arising from viscoelastic flows
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.