Quelques espaces fonctionnels associés à des processus gaussiens
Z. Ciesielski; G. Kerkyacharian; B. Roynette
Studia Mathematica (1993)
- Volume: 107, Issue: 2, page 171-204
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topCiesielski, Z., Kerkyacharian, G., and Roynette, B.. "Quelques espaces fonctionnels associés à des processus gaussiens." Studia Mathematica 107.2 (1993): 171-204. <http://eudml.org/doc/216028>.
@article{Ciesielski1993,
author = {Ciesielski, Z., Kerkyacharian, G., Roynette, B.},
journal = {Studia Mathematica},
keywords = {Gaussian measures; spaces of Besov-Orlicz type; Brownian motion; stochastic equations; stable processes with independent increments},
language = {fre},
number = {2},
pages = {171-204},
title = {Quelques espaces fonctionnels associés à des processus gaussiens},
url = {http://eudml.org/doc/216028},
volume = {107},
year = {1993},
}
TY - JOUR
AU - Ciesielski, Z.
AU - Kerkyacharian, G.
AU - Roynette, B.
TI - Quelques espaces fonctionnels associés à des processus gaussiens
JO - Studia Mathematica
PY - 1993
VL - 107
IS - 2
SP - 171
EP - 204
LA - fre
KW - Gaussian measures; spaces of Besov-Orlicz type; Brownian motion; stochastic equations; stable processes with independent increments
UR - http://eudml.org/doc/216028
ER -
References
top- [C0] Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403-413. Zbl0133.10502
- [C1] Z. Ciesielski, On the isomorphisms of the spaces and m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222.
- [C2] Z. Ciesielski, Some properties of Schauder basis of the space C ⟨0,1⟩, ibid., 141-144. Zbl0093.07001
- [C3] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157. Zbl0113.27204
- [C4] Z. Ciesielski, Properties of the orthonormal Franklin system, II, ibid. 27 (1966), 289-323. Zbl0148.04702
- [C5] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. Zbl0273.41010
- [C6] Z. Ciesielski, Orlicz spaces, spline systems and brownian motion, Constr. Approx. 9 (1993), 191-208. Zbl0814.46022
- [DHJS] R. Dudley, J. Hoffmann-Jørgensen and L. Shepp, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979), 319-342. Zbl0424.60041
- [F] X. Fernique, Régularité de processus gaussiens, Invent. Math. 12 (1971), 304-320. Zbl0217.21104
- [G] H. Gebelein, Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941), 364-379. Zbl0026.33402
- [KR] G. Kerkyacharian et B. Roynette, Une démonstration simple des théorèmes de Kolmogorov, Donsker et Itô-Nisio, C. R. Acad. Sci. Paris Sér. I 312 (1991), 877-882. Zbl0764.60008
- [K] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [LT] M. Ledoux and M. Talagrand, Probability on Banach Spaces, Ergeb. Math. Grenzgeb. 23, Springer, Berlin, 1991.
- [M] Y. Meyer, Ondelettes et opérateurs I, Hermann, 1990. Zbl0694.41037
- [N] E. Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211-227. Zbl0273.60079
- [Nu] D. Nualart, Noncausal stochastic integrals and calculus, in: Lecture Notes in Math. 1316, Springer, 1988, 80-129.
- [O] S. Ogawa, The stochastic integral of noncausal type as an extension of the symmetric integrals, Japan J. Appl. Math. 2 (1985), 229-240. Zbl0616.60056
- [R] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. Zbl0328.41008
- [Ro] B. Roynette, Mouvement brownien et espaces de Besov, Stochastics and Stochastics Rep. (1993), à paraître.
- [S] P. Sjögren, Riemann sums for stochastic integrals and moduli of continuity, Z. Wahrsch. Verw. Gebiete 59 (1982), 411-424.
- [T] M. Talagrand, Sur l'intégrabilité des vecteurs gaussiens, ibid. 68 (1984), 1-8. Zbl0529.60034
Citations in EuDML Documents
top- Zongxia Liang, Besov regularity for the generalized local time of the indefinite Skorohod integral
- Mikhail Lifshits, Thomas Simon, Small deviations for fractional stable processes
- Gérard Lorang, Régularité Besov des trajectoires du processus intégral de Skorokhod
- Djamel Hamadouche, Charles Suquet, Weak Hölder convergence of processes with application to the perturbed empirical process
- M. Ait Ouahra, Weak convergence to fractional Brownian motion in some anisotropic Besov space
- Marianne Clausel, Lacunary Fractional brownian Motion
- B. Boufoussi, Régularité du temps local brownien dans les espaces de Besov-Orlicz
- Yue Hu, Mohamed Mellouk, Régularité Besov-Orlicz du temps local Brownien
- Mohamed Ait Ouahra, Abdelghani Kissami, Aissa Sghir, Un principe d’invariance de type Donsker dans une classe d’espaces de Besov-Orlicz
- Marianne Clausel, Lacunary Fractional Brownian Motion
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.