Nonlinear Schrödinger equation on four-dimensional compact manifolds
Patrick Gérard; Vittoria Pierfelice
Bulletin de la Société Mathématique de France (2010)
- Volume: 138, Issue: 1, page 119-151
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGérard, Patrick, and Pierfelice, Vittoria. "Nonlinear Schrödinger equation on four-dimensional compact manifolds." Bulletin de la Société Mathématique de France 138.1 (2010): 119-151. <http://eudml.org/doc/272391>.
@article{Gérard2010,
abstract = {We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group.},
author = {Gérard, Patrick, Pierfelice, Vittoria},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear Schrödinger; eigenfunction estimates; dispersive equations},
language = {eng},
number = {1},
pages = {119-151},
publisher = {Société mathématique de France},
title = {Nonlinear Schrödinger equation on four-dimensional compact manifolds},
url = {http://eudml.org/doc/272391},
volume = {138},
year = {2010},
}
TY - JOUR
AU - Gérard, Patrick
AU - Pierfelice, Vittoria
TI - Nonlinear Schrödinger equation on four-dimensional compact manifolds
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 1
SP - 119
EP - 151
AB - We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group.
LA - eng
KW - nonlinear Schrödinger; eigenfunction estimates; dispersive equations
UR - http://eudml.org/doc/272391
ER -
References
top- [1] Mathematical aspects of nonlinear dispersive equations – Annals of Mathematics Studies, vol. 163, Princeton University Press, 2007. Zbl1143.35001MR2332225
- [2] A. L. Besse – Manifolds all of whose geodesics are closed, Ergebnisse Math. Grenzg., vol. 93, Springer, 1978. Zbl0387.53010MR496885
- [3] J. Bourgain – « Exponential sums and nonlinear Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 157–178. Zbl0787.35096MR1209300
- [4] —, « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 107–156. Zbl0787.35098MR1209299
- [5] —, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, Amer. Math. Soc., 1999. Zbl0933.35178
- [6] N. Burq, P. Gérard & N. Tzvetkov – « The Cauchy problem for the nonlinear Schrödinger equation on compact manifolds », in Phase space analysis of partial differential equations. Vol. I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2004, p. 21–52. Zbl1084.35086
- [7] —, « Multilinear estimates for the Laplace spectral projectors on compact manifolds », C. R. Math. Acad. Sci. Paris338 (2004), p. 359–364. Zbl1040.58011MR2057164
- [8] —, « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
- [9] —, « Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces », Invent. Math.159 (2005), p. 187–223. Zbl1092.35099MR2142336
- [10] —, « Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations », Ann. Sci. École Norm. Sup.38 (2005), p. 255–301. Zbl1116.35109MR2144988
- [11] T. Cazenave – Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003
- [12] P. Gérard – « Nonlinear Schrödinger equations on compact manifolds », in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, p. 121–139. Zbl1076.35115
- [13] —, « Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem », in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, p. 157–182. Zbl1106.35096MR2275675
- [14] J. Ginibre – « Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain) », Astérisque 237 (1996), p. 163–187, Séminaire Bourbaki, vol. 1994/95, exposé no 796. Zbl0870.35096MR1423623
- [15] J. Ginibre & G. Velo – « The global Cauchy problem for the nonlinear Schrödinger equation revisited », Ann. Inst. H. Poincaré Anal. Non Linéaire2 (1985), p. 309–327. Zbl0586.35042MR801582
- [16] T. Kato – « On nonlinear Schrödinger equations », Ann. Inst. H. Poincaré Phys. Théor.46 (1987), p. 113–129. Zbl0632.35038
- [17] E. Ryckman & M. Visan – « Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in », Amer. J. Math.129 (2007), p. 1–60. Zbl1160.35067MR2288737
- [18] C. D. Sogge – « Oscillatory integrals and spherical harmonics », Duke Math. J.53 (1986), p. 43–65. Zbl0636.42018MR835795
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.