Nonlinear Schrödinger equation on four-dimensional compact manifolds

Patrick Gérard; Vittoria Pierfelice

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 1, page 119-151
  • ISSN: 0037-9484

Abstract

top
We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group.

How to cite

top

Gérard, Patrick, and Pierfelice, Vittoria. "Nonlinear Schrödinger equation on four-dimensional compact manifolds." Bulletin de la Société Mathématique de France 138.1 (2010): 119-151. <http://eudml.org/doc/272391>.

@article{Gérard2010,
abstract = {We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group.},
author = {Gérard, Patrick, Pierfelice, Vittoria},
journal = {Bulletin de la Société Mathématique de France},
keywords = {nonlinear Schrödinger; eigenfunction estimates; dispersive equations},
language = {eng},
number = {1},
pages = {119-151},
publisher = {Société mathématique de France},
title = {Nonlinear Schrödinger equation on four-dimensional compact manifolds},
url = {http://eudml.org/doc/272391},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Gérard, Patrick
AU - Pierfelice, Vittoria
TI - Nonlinear Schrödinger equation on four-dimensional compact manifolds
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 1
SP - 119
EP - 151
AB - We prove two new results about the Cauchy problem in the energy space for nonlinear Schrödinger equations on four-dimensional compact manifolds. The first one concerns global well-posedness for Hartree-type nonlinearities and includes approximations of cubic NLS on the sphere as a particular case. The second one provides, in the case of zonal data on the sphere, local well-posedness for quadratic nonlinearities as well as a necessary and sufficient condition of global well-posedness for small energy data in the Hamiltonian case. Both results are based on new multilinear Strichartz-type estimates for the Schrödinger group.
LA - eng
KW - nonlinear Schrödinger; eigenfunction estimates; dispersive equations
UR - http://eudml.org/doc/272391
ER -

References

top
  1. [1] Mathematical aspects of nonlinear dispersive equations – Annals of Mathematics Studies, vol. 163, Princeton University Press, 2007. Zbl1143.35001MR2332225
  2. [2] A. L. Besse – Manifolds all of whose geodesics are closed, Ergebnisse Math. Grenzg., vol. 93, Springer, 1978. Zbl0387.53010MR496885
  3. [3] J. Bourgain – « Exponential sums and nonlinear Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 157–178. Zbl0787.35096MR1209300
  4. [4] —, « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations », Geom. Funct. Anal.3 (1993), p. 107–156. Zbl0787.35098MR1209299
  5. [5] —, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, Amer. Math. Soc., 1999. Zbl0933.35178
  6. [6] N. Burq, P. Gérard & N. Tzvetkov – « The Cauchy problem for the nonlinear Schrödinger equation on compact manifolds », in Phase space analysis of partial differential equations. Vol. I, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2004, p. 21–52. Zbl1084.35086
  7. [7] —, « Multilinear estimates for the Laplace spectral projectors on compact manifolds », C. R. Math. Acad. Sci. Paris338 (2004), p. 359–364. Zbl1040.58011MR2057164
  8. [8] —, « Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds », Amer. J. Math.126 (2004), p. 569–605. Zbl1067.58027MR2058384
  9. [9] —, « Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces », Invent. Math.159 (2005), p. 187–223. Zbl1092.35099MR2142336
  10. [10] —, « Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations », Ann. Sci. École Norm. Sup.38 (2005), p. 255–301. Zbl1116.35109MR2144988
  11. [11] T. Cazenave – Semilinear Schrödinger equations, Courant Lecture Notes in Math., vol. 10, New York University Courant Institute of Mathematical Sciences, 2003. Zbl1055.35003
  12. [12] P. Gérard – « Nonlinear Schrödinger equations on compact manifolds », in European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, p. 121–139. Zbl1076.35115
  13. [13] —, « Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem », in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, p. 157–182. Zbl1106.35096MR2275675
  14. [14] J. Ginibre – « Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace (d’après Bourgain) », Astérisque 237 (1996), p. 163–187, Séminaire Bourbaki, vol. 1994/95, exposé no 796. Zbl0870.35096MR1423623
  15. [15] J. Ginibre & G. Velo – « The global Cauchy problem for the nonlinear Schrödinger equation revisited », Ann. Inst. H. Poincaré Anal. Non Linéaire2 (1985), p. 309–327. Zbl0586.35042MR801582
  16. [16] T. Kato – « On nonlinear Schrödinger equations », Ann. Inst. H. Poincaré Phys. Théor.46 (1987), p. 113–129. Zbl0632.35038
  17. [17] E. Ryckman & M. Visan – « Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in 1 + 4 », Amer. J. Math.129 (2007), p. 1–60. Zbl1160.35067MR2288737
  18. [18] C. D. Sogge – « Oscillatory integrals and spherical harmonics », Duke Math. J.53 (1986), p. 43–65. Zbl0636.42018MR835795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.