A non probabilistic proof of the relative Fatou theorem

J. L. Doob

Annales de l'institut Fourier (1959)

  • Volume: 9, page 293-300
  • ISSN: 0373-0956

How to cite

top

Doob, J. L.. "A non probabilistic proof of the relative Fatou theorem." Annales de l'institut Fourier 9 (1959): 293-300. <http://eudml.org/doc/73754>.

@article{Doob1959,
author = {Doob, J. L.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
pages = {293-300},
publisher = {Association des Annales de l'Institut Fourier},
title = {A non probabilistic proof of the relative Fatou theorem},
url = {http://eudml.org/doc/73754},
volume = {9},
year = {1959},
}

TY - JOUR
AU - Doob, J. L.
TI - A non probabilistic proof of the relative Fatou theorem
JO - Annales de l'institut Fourier
PY - 1959
PB - Association des Annales de l'Institut Fourier
VL - 9
SP - 293
EP - 300
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73754
ER -

References

top
  1. [1] M. BRELOT, Le problème de Dirichlet. Axiomatique et frontière de Martin (J. Math. pures et appl., 35 (1956), 297-335). Zbl0071.10001MR20 #6607
  2. [2] A. P. CALDERON, On the behavior of harmonic functions at the boundary (Trans. Amer. Math. Soc., 68 (1950), 47-54). Zbl0035.18901MR11,357e
  3. [3] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions (Bull. Soc. Math. France, 85 (1957), 431-458). Zbl0097.34004MR22 #844
  4. [4] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel (Ann. Inst. Fourier, 7 (1957), 183-281). Zbl0086.30603MR20 #6608

Citations in EuDML Documents

top
  1. Marcel Brelot, J. L. Doob, Limites angulaires et limites fines
  2. Linda Lumer-Naïm, Sur le théorème de Fatou généralisé
  3. Daniel Sibony, Théorème de limites fines et problème de Dirichlet
  4. J. L. Doob, Some classical function theory theorems and their modern versions
  5. Marcel Brelot, Intégrabilité uniforme quelques applications à la théorie du potentiel
  6. Marcel Brelot, Allure des potentiels a la frontière et fonctions fortement sousharmoniques
  7. Marcel Brelot, Étude comparée des deux types d'effilement
  8. J. L. Doob, Boundary properties of functions with finite Dirichlet integrals
  9. Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems
  10. Linda Lumer-Naïm, p -spaces of harmonic functions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.