A non probabilistic proof of the relative Fatou theorem
Annales de l'institut Fourier (1959)
- Volume: 9, page 293-300
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDoob, J. L.. "A non probabilistic proof of the relative Fatou theorem." Annales de l'institut Fourier 9 (1959): 293-300. <http://eudml.org/doc/73754>.
@article{Doob1959,
author = {Doob, J. L.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
pages = {293-300},
publisher = {Association des Annales de l'Institut Fourier},
title = {A non probabilistic proof of the relative Fatou theorem},
url = {http://eudml.org/doc/73754},
volume = {9},
year = {1959},
}
TY - JOUR
AU - Doob, J. L.
TI - A non probabilistic proof of the relative Fatou theorem
JO - Annales de l'institut Fourier
PY - 1959
PB - Association des Annales de l'Institut Fourier
VL - 9
SP - 293
EP - 300
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73754
ER -
References
top- [1] M. BRELOT, Le problème de Dirichlet. Axiomatique et frontière de Martin (J. Math. pures et appl., 35 (1956), 297-335). Zbl0071.10001MR20 #6607
- [2] A. P. CALDERON, On the behavior of harmonic functions at the boundary (Trans. Amer. Math. Soc., 68 (1950), 47-54). Zbl0035.18901MR11,357e
- [3] J. L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions (Bull. Soc. Math. France, 85 (1957), 431-458). Zbl0097.34004MR22 #844
- [4] L. NAÏM, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel (Ann. Inst. Fourier, 7 (1957), 183-281). Zbl0086.30603MR20 #6608
Citations in EuDML Documents
top- Marcel Brelot, J. L. Doob, Limites angulaires et limites fines
- Linda Lumer-Naïm, Sur le théorème de Fatou généralisé
- Daniel Sibony, Théorème de limites fines et problème de Dirichlet
- J. L. Doob, Some classical function theory theorems and their modern versions
- Marcel Brelot, Intégrabilité uniforme quelques applications à la théorie du potentiel
- Marcel Brelot, Allure des potentiels a la frontière et fonctions fortement sousharmoniques
- Marcel Brelot, Étude comparée des deux types d'effilement
- J. L. Doob, Boundary properties of functions with finite Dirichlet integrals
- Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems
- Linda Lumer-Naïm, -spaces of harmonic functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.