Theory of Bessel potentials. I
Nachman Aronszajn; K. T. Smith
Annales de l'institut Fourier (1961)
- Volume: 11, page 385-475
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAronszajn, Nachman, and Smith, K. T.. "Theory of Bessel potentials. I." Annales de l'institut Fourier 11 (1961): 385-475. <http://eudml.org/doc/73778>.
@article{Aronszajn1961,
author = {Aronszajn, Nachman, Smith, K. T.},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
pages = {385-475},
publisher = {Association des Annales de l'Institut Fourier},
title = {Theory of Bessel potentials. I},
url = {http://eudml.org/doc/73778},
volume = {11},
year = {1961},
}
TY - JOUR
AU - Aronszajn, Nachman
AU - Smith, K. T.
TI - Theory of Bessel potentials. I
JO - Annales de l'institut Fourier
PY - 1961
PB - Association des Annales de l'Institut Fourier
VL - 11
SP - 385
EP - 475
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/73778
ER -
References
top- [0] N. ARONSZAJN, Boundary values of functions with finite Dirichlet integral, Conference on Partial Differential equations, 1954, University of Kansas, Lawrence, Kansas. Zbl0068.08201
- [1] N. ARONSZAJN and K. T. SMITH, Functional spaces and functional completion, Annales de l'Inst. Fourier, vol. 6, 1955-1956, pp. 125-185. Zbl0071.33003MR18,319c
- [2] N. ARONSZAJN and K. T. SMITH, Characterization of positive reproducing kernels, Applications to Green's functions, American Journ. Math., vol. 79, 1957, pp. 611-622. Zbl0079.13603MR19,566f
- [3] S. BOCHNER, Vorlesungen über Fouriersche Integrale, Chelsea, New York, 1948. Zbl0006.11001JFM58.0292.01
- [4] M. BRELOT, Points irréguliers et transformations continues en théorie du potentiel, Journal de Math. Pures et Appl., vol. 19, 1940. Zbl0024.40301MR3,47bJFM66.0447.01
- [4a] L. CARLESON, On the connection between Hausdorff measures and capacity, Arkiv. f. Mat. vol. 36, 1957, pp. 403-406. Zbl0078.09303
- [5] H. CARTAN, Sur les fondements de la théorie du potentiel, Bull. Soc. Math. de France, vol. 69, 1941, pp. 71-96. Zbl0026.22703MR7,447iJFM67.0346.03
- [6] H. CARTAN, Théorie du potentiel newtonien : énergie, capacité, suites de potentiels, Bull. Soc. Math. de France, vol. 73, 1945, pp. 74-106. Zbl0061.22609MR7,447h
- [7] G. CHOQUET, Theory of capacities, Ann. de l'Inst. Fourier, vol. 5, 1953-1954, pp. 131-295. Zbl0064.35101MR18,295g
- [7 a] G. CHOQUET and J. DENY, Modèles finis en théorie du potentiel, Journ. d'Analyse Math., vol. 5, 1956-1957, pp. 77-135. Zbl0086.30502MR19,405d
- [8] J. DENY, Les potentiels d'énergie finie, Acta Math., vol. 82, 1950, pp. 107-183. Zbl0034.36201MR12,98e
- [8 a] J. DENY and J. L. LIONS, Les espaces du type de Beppo Levi, Ann. de l'Inst. Fourier, vol. 5, 1955, pp. 305-370. Zbl0065.09903MR17,646a
- [9] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Tables of Integral Transforms II, New York, McGraw-Hill, 1954. Zbl0055.36401MR16,468c
- [10] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Higher Transcendental Functions II, New York, McGraw-Hill, 1953. Zbl0052.29502MR15,419i
- [10 a] P. ERDOS and J. GILLIS, Note on the transfinite diameter, J. Lond. Math. Soc., vol. 12 (1937). Zbl0017.11505JFM63.0191.01
- [11] O. FROSTMAN, Potentiels d'équilibre et capacité des ensembles, Thesis, Lund, 1935. Zbl0013.06302JFM61.1262.02
- [11 a] B. FUGLEDE, Extremal length and functional completion, Acta Math., vol. 98, 1957, pp. 171-219. Zbl0079.27703MR20 #4187
- [12] G. H. HARDY, J. E. LITTLEWOOD et G. POLYA, Inequalities, Cambridge, The University Press, 1934. Zbl0010.10703JFM60.0169.01
- [13] M. D. KIRSZBRAUN, Uber die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., vol. 22, 1934. Zbl0009.03904JFM60.0532.03
- [13 a] K. KUNUGUI, Étude sur la théorie du potentiel generalisé, Osaka, Math. Journ., vol. 2, 1950, pp. 63-103. Zbl0036.34105MR12,410h
- [13 b] O. NIKODYM, Sur une classe de fonctions considérées dans l'étude du problème de Dirichlet, Fund. Math., vol. 21, 1933, pp. 129-150. Zbl0008.15903JFM59.0290.01
- [13 c] N. NINOMIYA, Étude sur la théorie du potentiel pris par rapport au noyau symétrique, J. Inst. Polytech. Osaka City Univ., vol. 8, 1957, pp. 147-179. Zbl0082.31601MR21 #776
- [13 d] M. OHTSUKA, Capacité des ensembles produits, Nagoya Math. Journ. vol. 12, 1957, pp. 95-130. Zbl0079.12102MR21 #4309
- [14] L. SCHWARTZ, Théorie des distributions, I, II. Ac. Sci. Ind., vol. 1091, 1122, Paris, 1950-1951. Zbl0042.11405MR12,31d
- [14 a] L. N. SLOBODETZKY, Spaces of S. L. SOBOLEFF of fractional order... (in Russian), Doklady Akad. Nauk. S.S.S.R., 118, 1958, pp. 243-246. Zbl0088.30302
- [14 b] L. N. SLOBODETZKY, Évaluations of solutions... (in Russian), Doklady Akad. Nauk S.S.S.R., vol. 120, 1958, pp. 468-471.
- [15] K. T. SMITH, Mean values and continuity of Riesz potentials, Comm. Pure and Applied Math., vol. 9, 1956, pp. 569-576. Zbl0072.31405MR18,389b
- [15 a] K. T. SMITH, Functional spaces, functional completion and differential problems, Conference on Partial Differential Equations, University of Kansas, 1954, pp. 59-75. Zbl0067.34501
- [15 b] S. L. SOBOLEFF, Sur un théorème de l'analyse fonctionnelle, C. R. Ac. Sci. U.R.S.S., vol. 29, 1938, pp. 5-9. Zbl0022.14803JFM64.0208.03
- [16] G. N. WATSON, A Treatise on the Theory of Bessel Functions, Cambridge, The University Press, 1922. Zbl48.0412.02JFM50.0264.01
Citations in EuDML Documents
top- Robert S. Strichartz, Fubini-type theorems
- Susana Elena Trione, Soluzioni elementari causali dell'operatore di Klein—Gordon iterato
- Jun Masamune, Toshihiro Uemura, Conservation property of symmetric jump processes
- Jacques-Louis Lions, Sur les théorèmes d'interpolation
- Nachman Aronszajn, Szeptycki P., On spaces of potentials connected with classes
- Nachman Aronszajn, R. D. Brown, R. S. Butcher, Construction of the solutions of boundary value problems for the biharmonic operator in a rectangle
- Yves Rakotondratsimba, A two-weight inequality for the Bessel potential operator
- R. J. Nessel, A. Pawelke, Über Favardklassen von Summationsprozessen mehrdimensionaler Fourierreihen
- Robert S. Strichartz, Invariant pseudo-differential operators on a Lie group
- Robert Adams, Nachman Aronszajn, M. S. Hanna, Theory of Bessel potentials. III : potentials on regular manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.