Monotonicity of certain functionals under rearrangement
Adriano Garsia; Eugène Rodemich
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 2, page 67-116
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGarsia, Adriano, and Rodemich, Eugène. "Monotonicity of certain functionals under rearrangement." Annales de l'institut Fourier 24.2 (1974): 67-116. <http://eudml.org/doc/74178>.
@article{Garsia1974,
abstract = {We show here that a wide class of integral inequalities concerning functions on $[0,1]$ can be obtained by purely combinatorial methods. More precisely, we obtain modulus of continuity or other high order norm estimates for functions satisfying conditions of the type $\int ^1_0\int ^1_0\Psi \big (\{f(x)-f(y)\over p(x-y)\}\big )dxdy< \infty $ where $\Psi (u)$ and $p(u)$ are monotone increasing functions of $\vert u\vert $.Several applications are also derived. In particular these methods are shown to yield a new condition for path continuity of general stochastic processes},
author = {Garsia, Adriano, Rodemich, Eugène},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {67-116},
publisher = {Association des Annales de l'Institut Fourier},
title = {Monotonicity of certain functionals under rearrangement},
url = {http://eudml.org/doc/74178},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Garsia, Adriano
AU - Rodemich, Eugène
TI - Monotonicity of certain functionals under rearrangement
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 67
EP - 116
AB - We show here that a wide class of integral inequalities concerning functions on $[0,1]$ can be obtained by purely combinatorial methods. More precisely, we obtain modulus of continuity or other high order norm estimates for functions satisfying conditions of the type $\int ^1_0\int ^1_0\Psi \big ({f(x)-f(y)\over p(x-y)}\big )dxdy< \infty $ where $\Psi (u)$ and $p(u)$ are monotone increasing functions of $\vert u\vert $.Several applications are also derived. In particular these methods are shown to yield a new condition for path continuity of general stochastic processes
LA - eng
UR - http://eudml.org/doc/74178
ER -
References
top- [1] P. BERNARD, Quelques propriétés des trajectoires des fonctions aléatoires stables sur Rn, Ann. Inst. H. Poincaré, Sect. B 6, 131-151. Zbl0196.18601MR42 #1198
- [2] J. DELPORTE, Fonctions aléatoires de deux variables à échantillons continus sur un domaine rectangulaire borné, Z. Wahrsch., 20, 249-258. Zbl0147.15801
- [3] R. M. DUDLEY, Sample functions of the Gaussian process, Annals of Prob. V. 1, No. 1 (1973), 66-103. Zbl0261.60033MR49 #11605
- [4] A. GARSIA, On the smoothness of functions satisfying certain integral inequalities, Functional Analysis, Proceedings of a symposium, N. Y. Acad. Press, 1970, 127-161. Zbl0286.26004MR42 #8267
- [5] A. GARSIA, Continuity properties of Gaussian processes with multi-dimensional time parameter, Proceedings VI Berkeley Symposium V. II (1970), 369-374. Zbl0272.60034MR53 #14623
- [6] A. GARSIA, Martingale inequalities, Seminar Notes W. A. Benjamin, Lecture Series (to appear).
- [7] A. GARSIA, E. RODEMICH and H. RUMSEY JR., A real variable lemma and the continuity of paths of Gaussian processes, Indiana U. Math. J. V., 20 (1970), 565-578. Zbl0252.60020MR42 #2534
- [8] R. GETOOR and H. KESTEN, Continuity of local times for Markov Processes, Compositio Math., V. 24, Fasc. 3 (1972), 277-303. Zbl0293.60069MR46 #10075
- [9] C. GREENHALL, Growth and continuity of functions satisfying quadratic integral inequalities, Indiana U. Math. J. V., 21, No. 2 (1971), 157-175. Zbl0212.08604MR44 #5420
- [10] C. S. HERZ, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, Jour. Math. Mech. V., 18, No. 4 (1968), 283-324. Zbl0177.15701MR55 #11028
- [11] F. JOHN and L. NIRENBERG, On functions of bounded mean oscillation, Comm. Pure and Appl. Math., V. 14 (1961), 415-426. Zbl0102.04302MR24 #A1348
- [12] J. LAMPERTI, Probability, W. A. Benjamin Inc., Amsterdam (1966). Zbl0147.15502
- [13] M. MARCUS and L. SHEPP, Sample Behaviour of Gaussian processes, Proc. VI, Berkeley Symp., V. II (1970), 423-439. Zbl0379.60040
- [14] H. J. REYSER, Combinatorial Mathematics, Carus Math. Monograph, No. 14, (1963). Zbl0112.24806MR27 #51
- [14] H. TAYLOR, Rearrangements of incidence tables, Jour. of Comb. Theory (A), 14 (1973), 30-36. Zbl0257.05019MR47 #8322
Citations in EuDML Documents
top- Matthias Kurzke, A nonlocal singular perturbation problem with periodic well potential
- Matthias Kurzke, A nonlocal singular perturbation problem with periodic well potential
- G. Pisier, Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique
- Constantin Nanopoulos, Photis Nobelis, Régularité et propriétés limites des fonctions aléatoires
- Talenti, Giorgio, Inequalities in rearrangement invariant function spaces
- Kolyada, Viktor I., On embedding theorems
- Guido Trombetti, Metodi di simmetrizzazione nelle equazioni alle derivate parziali
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.