Class groups of abelian fields, and the main conjecture
Annales de l'institut Fourier (1992)
- Volume: 42, Issue: 3, page 449-499
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreither, Cornelius. "Class groups of abelian fields, and the main conjecture." Annales de l'institut Fourier 42.3 (1992): 449-499. <http://eudml.org/doc/74963>.
@article{Greither1992,
abstract = {This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case $p=2$, by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of $\chi $-parts of $p$-class groups of abelian number fields: first for relative class groups of real fields (again including the case $p=2$). As a consequence, a generalization of the Gras conjecture is stated and proved.},
author = {Greither, Cornelius},
journal = {Annales de l'institut Fourier},
keywords = {cyclotomic extensions; p-adic L-functions; main conjecture of Iwasawa theory; units; abelian number fields; relative class groups; class groups of real fields; Gras conjecture},
language = {eng},
number = {3},
pages = {449-499},
publisher = {Association des Annales de l'Institut Fourier},
title = {Class groups of abelian fields, and the main conjecture},
url = {http://eudml.org/doc/74963},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Greither, Cornelius
TI - Class groups of abelian fields, and the main conjecture
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 449
EP - 499
AB - This first part of this paper gives a proof of the main conjecture of Iwasawa theory for abelian base fields, including the case $p=2$, by Kolyvagin’s method of Euler systems. On the way, one obtains a general result on local units modulo circular units. This is then used to deduce theorems on the order of $\chi $-parts of $p$-class groups of abelian number fields: first for relative class groups of real fields (again including the case $p=2$). As a consequence, a generalization of the Gras conjecture is stated and proved.
LA - eng
KW - cyclotomic extensions; p-adic L-functions; main conjecture of Iwasawa theory; units; abelian number fields; relative class groups; class groups of real fields; Gras conjecture
UR - http://eudml.org/doc/74963
ER -
References
top- [1] J. COATES, p-adic L-functions and Iwasawa theory, Proc. Symp. Alg. Number theory, Durham (1975), 269-353. Zbl0393.12027
- [2] R. COLEMAN, Division values in local fields, Invent. Math., 53 (1979), 91-116. Zbl0429.12010MR81g:12017
- [3] R. COLEMAN, Local units modulo circular units, Proc. Amer. Math. Soc., 89, 1 (1983), 1-7. Zbl0528.12005MR85b:11088
- [4] L.J. FEDERER, Regulators, Iwasawa modules, and the Main conjecture for p = 2, in : N. KOBLITZ (ed.) : Number theory related to Fermat's Last Theorem, Birkhäuser Verlag (1982), 289-296. Zbl0504.12009
- [5] R. GILLARD, Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 49-79. Zbl0387.12002
- [6] R. GOLD, J. KIM, Bases for cyclotomic units, Comp. Math., 71 (1989), 13-28. Zbl0687.12003MR90h:11101
- [7] G. GRAS, Sur l'annulation en 2 des classes relatives des corps abéliens, C.R. Math. Rep. Acad. Sci. Canada, 1 (1978), n°2, 107-110. Zbl0403.12005MR80k:12017
- [8] R. GREENBERG, On p-adic L-functions and cyclotomic fields I, Nagoya Math. J., 56 (1975), 61-77. Zbl0315.12008MR50 #12984
- [9] R. GREENBERG, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. Zbl0373.12007MR56 #2964
- [10] B. GROSS, p-adic L-series at s = 0, J. Math. Soc. Japan, 28 (1981), 979-994. Zbl0507.12010MR84b:12022
- [11] K. IWASAWA, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964), 42-82. Zbl0125.29207MR35 #6646
- [12] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies n°74, Princeton University Press, Princeton 1972. Zbl0236.12001MR50 #12974
- [13] K. IWASAWA, On Zl-extensions of algebraic number fields, Ann. of Math., (2) (1979), 236-326. Zbl0285.12008
- [14] M. KOLSTER, A relation between the 2-primary parts of the main conjecture and the Birch-Tate conjecture, Canad. Math. Bull., 32 (1989), 248-251. Zbl0675.12004MR90k:11154
- [15] V. A. KOLYVAGIN, Euler systems. In : The Grothendieck Festschrift, vol. 2, 435-483, Birkhäuser Verlag 1990. Zbl0742.14017
- [16] S. LANG, Cyclotomic fields II, Graduate Texts in Mathematics, Springer Verlag, 1980. Zbl0435.12001MR81i:12004
- [17] B. MAZUR, A. WILES, Class fields of abelian extensions of Q, Invent. Math., 76 (1984), 179-330. Zbl0545.12005MR85m:11069
- [18] K. RUBIN, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math., 93 (1988), 701-713. Zbl0673.12004MR89j:11105
- [19] K. RUBIN, The Main Conjecture, Appendix to the second edition of S. Lang : Cyclotomic fields, Springer Verlag, 1990.
- [20] W. SINNOTT, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., 62 (1980), 181-234. Zbl0465.12001MR82i:12004
- [21] W. SINNOTT, Appendix to L. Federer, B. Gross : Regulators and Iwasawa modules, Invent. Math., 62 (1981), 443-457. Zbl0468.12005
- [22] D. SOLOMON, On the class groups of imaginary abelian fields, Ann. Inst. Fourier, Grenoble, 40-3 (1990), 467-492. Zbl0694.12004MR92a:11133
- [23] L. WASHINGTON, Introduction to cyclotomic fields, Graduate Texts in Mathematics n°83, Springer Verlag, 1982. Zbl0484.12001MR85g:11001
- [24] A. WILES, The Iwasawa conjecture for totally real fields, Ann. Math., 131 (1990), 493-540. Zbl0719.11071MR91i:11163
Citations in EuDML Documents
top- Pietro Cornacchia, Fitting ideals of class groups in a -extension
- Stéphane Viguié, Invariants and coinvariants of semilocal units modulo elliptic units
- Denis Benois, Thong Nguyen Quang Do, Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien
- Jean-Robert Belliard, Thong Nguyen Quang Do, Formules de classes pour les corps abéliens réels
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.