Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents

Anton Zorich

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 2, page 325-370
  • ISSN: 0373-0956

Abstract

top
We construct a map on the space of interval exchange transformations, which generalizes the classical map on the interval, related to continued fraction expansion. This map is based on Rauzy induction, but unlike its relative kown up to now, the map is ergodic with respect to some finite absolutely continuous measure on the space of interval exchange transformations. We present the prescription for calculation of this measure based on technique developed by W. Veech for Rauzy induction.We study Lyapunov exponents related to this map and show that when the number of intervals is m , and the genus of corresponding surface is g , there are m - 2 g Lyapunov exponents, which are equal to zero, while the remaining 2 g ones are distributed into pairs θ i = - θ m - i + 1 . We present an explicit formula for the largest one.

How to cite

top

Zorich, Anton. "Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents." Annales de l'institut Fourier 46.2 (1996): 325-370. <http://eudml.org/doc/75181>.

@article{Zorich1996,
abstract = {We construct a map on the space of interval exchange transformations, which generalizes the classical map on the interval, related to continued fraction expansion. This map is based on Rauzy induction, but unlike its relative kown up to now, the map is ergodic with respect to some finite absolutely continuous measure on the space of interval exchange transformations. We present the prescription for calculation of this measure based on technique developed by W. Veech for Rauzy induction.We study Lyapunov exponents related to this map and show that when the number of intervals is $m$, and the genus of corresponding surface is $g$, there are $m-2g$ Lyapunov exponents, which are equal to zero, while the remaining $2g$ ones are distributed into pairs $\theta _i=-\theta _\{m-i+1\}$. We present an explicit formula for the largest one.},
author = {Zorich, Anton},
journal = {Annales de l'institut Fourier},
keywords = {interval exchange transformation; Gauss measure; Rauzy induction; Lyapunov exponents; orientable measured foliation},
language = {eng},
number = {2},
pages = {325-370},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents},
url = {http://eudml.org/doc/75181},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Zorich, Anton
TI - Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 2
SP - 325
EP - 370
AB - We construct a map on the space of interval exchange transformations, which generalizes the classical map on the interval, related to continued fraction expansion. This map is based on Rauzy induction, but unlike its relative kown up to now, the map is ergodic with respect to some finite absolutely continuous measure on the space of interval exchange transformations. We present the prescription for calculation of this measure based on technique developed by W. Veech for Rauzy induction.We study Lyapunov exponents related to this map and show that when the number of intervals is $m$, and the genus of corresponding surface is $g$, there are $m-2g$ Lyapunov exponents, which are equal to zero, while the remaining $2g$ ones are distributed into pairs $\theta _i=-\theta _{m-i+1}$. We present an explicit formula for the largest one.
LA - eng
KW - interval exchange transformation; Gauss measure; Rauzy induction; Lyapunov exponents; orientable measured foliation
UR - http://eudml.org/doc/75181
ER -

References

top
  1. [1] P. ARNOUX, G. LEVITT, Sur l'unique ergodicité des 1-formes fermées singulières, Inventiones Math., 85 (1986), 141-156 & 645-664. Zbl0577.58021MR87g:58004
  2. [2] P. ARNOUX, A. NOGUEIRA, Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles, Ann. scient. Éc. Norm. Sup., 4e série, 26 (1993), 645-664. Zbl0801.11036MR95h:11076
  3. [3] G. BENETTIN, I. GALGANI, A. GIORGILLI, J.-M. STRELCYN, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems ; a method for computing all of them. Part 1 : theory. Meccanica (1980), 9-20. Zbl0488.70015
  4. [4] A.B. KATOK, Invariant measures of flows on oriented surfaces, Soviet Math. Dokl., 14 (1973), 1104-1108. Zbl0298.28013
  5. [5] M. KEANE, Interval exchange transformations, Math. Z., 141, (1975), 25-31. Zbl0278.28010MR50 #10207
  6. [6] S.P. KERCKHOFF, Simplicial systems for interval exchange maps and measured foliations, Ergod. Th. & Dynam. Sys., 5 (1985), 257-271. Zbl0597.58024MR87g:58075
  7. [7] S. KERCKHOFF, H. MASUR, J. SMILLIE, Ergodicity of billiard flows and quadratic differentials, Annals of Math., 124 (1986), 293-311. Zbl0637.58010MR88f:58122
  8. [8] A. MAIER, On trajectories on closed orientable surfaces, Mat. Sbornik, 12 (1943), 71-84. Zbl0063.03856
  9. [9] H. MASUR, Interval exchange transformations and measured foliations, Annals of Math., 115-1 (1982), 169-200. Zbl0497.28012MR83e:28012
  10. [10] A. NOGUEIRA, D. RUDOLPH, Topological weakly mixing of interval exchange maps, to appear. Zbl0958.37010
  11. [11] A. NOGUEIRA, The 3-dimensional Poincaré continued fraction algorithm, preprint ENSL, 93 (1993), 1-25. 
  12. [12] V.I. OSELEDETS, A Multiplicative Ergodic Theorem. Ljapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. Zbl0236.93034
  13. [13] G. RAUZY, Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. Zbl0414.28018MR82m:10076
  14. [14] S. SCHWARTZMAN, Asymptotic cycles, Annals of Mathematics, 66 (1957), 270-284. Zbl0207.22603MR19,568i
  15. [15] W.A. VEECH, Projective swiss cheeses and uniquely ergodic interval exchange transformations, Ergodic Theory and Dynamical Systems, Vol. I, in Progress in Mathematics, Birkhauser, Boston, 1981, 113-193. 
  16. [16] W.A. VEECH, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242. Zbl0486.28014MR83g:28036b
  17. [17] W.A. VEECH, The metric theory of interval exchange transformations I. Generic spectral properties, Amer. Journal of Math., 106 (1984), 1331-1359. Zbl0631.28006MR87j:28024a
  18. [18] W.A. VEECH, The metric theory of interval exchange transformations II. Approximation by primitive interval exchanges, Amer. Journal of Math., 106 (1984), 1361-1387. Zbl0631.28007MR87j:28024b
  19. [19] W.A. VEECH, The Teichmüller geodesic flow, Annals of Mathematics, 124 (1986), 441-530. Zbl0658.32016MR88g:58153
  20. [20] W.A. VEECH, Moduli spaces of quadratic differentials, Journal d'Analyse Mathématique, 55 (1990), 117-171. Zbl0722.30032MR92e:32014
  21. [21] M. WOJTKOWSKI, Invariant families of cones and Lyapunov exponents, Ergod. Th. & Dynam. Sys., 5 (1985), 145-161. Zbl0578.58033MR86h:58090
  22. [22] A. ZORICH, Asymptotic flag of an orientable measured foliation on a surface, in “Geometric Study of Foliations”, World Sci., 1994, 479-498. 

Citations in EuDML Documents

top
  1. Luca Marchese, Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow
  2. Carlos Matheus, Jean-Christophe Yoccoz, David Zmiaikou, Homology of origamis with symmetries
  3. Artur Avila, Sébastien Gouëzel, Jean-Christophe Yoccoz, Exponential mixing for the Teichmüller flow
  4. Raphaël Krikorian, Déviations de moyennes ergodiques, flots de Teichmüller et cocycle de Kontsevich-Zorich
  5. Boris Adamczewski, Codages de rotations et phénomènes d'autosimilarité
  6. Sébastien Ferenczi, Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations
  7. Sébastien Ferenczi, A generalization of the self-dual induction to every interval exchange transformation
  8. Anne Broise-Alamichel, Yves Guivarc'h, Exposants caractéristiques de l'algorithme de Jacobi-Perron et de la transformation associée

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.