Drift and diffusion in phase space

L. Chierchia; G. Gallavotti

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 60, Issue: 1, page 1-144
  • ISSN: 0246-0211

How to cite

top

Chierchia, L., and Gallavotti, G.. "Drift and diffusion in phase space." Annales de l'I.H.P. Physique théorique 60.1 (1994): 1-144. <http://eudml.org/doc/76630>.

@article{Chierchia1994,
author = {Chierchia, L., Gallavotti, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {homoclinic splitting; heteroclinic trajectories; KAM theory; celestial mechanics; d'Alembert precession problem; stability; perturbations; Hamiltonian systems; Arnold's diffusion},
language = {eng},
number = {1},
pages = {1-144},
publisher = {Gauthier-Villars},
title = {Drift and diffusion in phase space},
url = {http://eudml.org/doc/76630},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Chierchia, L.
AU - Gallavotti, G.
TI - Drift and diffusion in phase space
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 60
IS - 1
SP - 1
EP - 144
LA - eng
KW - homoclinic splitting; heteroclinic trajectories; KAM theory; celestial mechanics; d'Alembert precession problem; stability; perturbations; Hamiltonian systems; Arnold's diffusion
UR - http://eudml.org/doc/76630
ER -

References

top
  1. [A] V. Arnold, Instability of Dynamical Systems with Several Degrees of Freedom, Sov. Mathematical Dokl., Vol. 5, 1966, pp. 581-585. 
  2. [ACKR] C. Amick, E.S.C. Ching, L.P. Kadanoff and V. Rom-Kedar, Beyond All Orders: Singular Perturbations in a Mapping, J. Nonlinear Sci., Vol. 2, 1992, pp. 9-67. Zbl0872.58054MR1158353
  3. [BG] G. Benetrin and G. Gallavotti, Stability of Motions Near Resonances in Quasi-Integrable Hamiltonian Systems, J. Statistical Physics, Vol. 44, 1986, pp. 293-338. Zbl0636.70018MR857061
  4. [CG] L. Chierchia and G. Gallavotti, Smooth Prime Integrals for Quasi-Integrable Hamiltonian Systems II, Nuovo Cimento, Vol. 67B, 1982, pp. 277-295. MR657905
  5. [CZ] L. Chierchia and E. Zehnder, Asymptotic Expansions of Quasi-Periodic Motions, Annali della Scuola Normale Superiore di Pisa, Serie IV, Vol. XVI, Fasc. 2, 1989. Zbl0695.34040
  6. [D] R. Douady, Stabilité ou instabilité des points fixes elliptiques, Annales Scientifiques de l'École Normale Supérieure, Vol. 21, 1988, pp. 1-46. Zbl0656.58020MR944100
  7. [DS] A. Delshams and M.T. Seara, An Asymptotic Expression for the Splitting of Separatrices of Rapidly Forced Pendulum, preprint, 1991. 
  8. [G] G. Gallavotti, The Elements of Mechanics, Springer, 1983. Zbl0512.70001MR698947
  9. [Ge] V.G. Gelfreich, Separatrices Splitting for the Rapidly Forced Pendulum, preprint, 1992. MR1279388
  10. [GLT] V.G. Gelfreich, V.F. Lazutkin and M.B. Tabanov, Exponentially Small Splitting in Hamiltonian Systems, Chaos, Vol. 1, (2), 1991. Zbl0899.58016MR1135901
  11. [Gr] S.M. Graff, On the Conservation for Hyperbolic Invariant Tori for Hamiltonian Systems, J. Differential Equations, Vol. 15, 1974, pp. 1-69. Zbl0257.34048MR365626
  12. [HMS] P. Holmes, J. Marsden and J. Scheurle, Exponentially Small Splittings of Separatrices in KAM Theory and Degenerate Bifurcations, preprint, 1989. Zbl0685.70017
  13. [L] S. De La Place, Mécanique Céleste, tome II, livre 5, ch. I, 1799, English Translation by E. Bodwitch, reprinted by Chelsea, 1966. 
  14. [La1] V.F. Lazutkin, The Existence of Caustics for a Billiard Problem in a Convex Domain, Izv. Akad. Nauk. SSSR, Vol. 37, (1), 1973. Zbl0277.52002
  15. [La2] V.F. Lazutkin, Separatrices Splitting for Standard and Semistandard Mappings, preprint, 1989. 
  16. [LW] R. De La Llave, E. Wayne, Whiskered Tori, preprint, 1990. 
  17. [M] J. Moser, Convergent Series Expansions for Quasi-Periodic Motions, Matematische Annalen, Vol. 169, 1967, pp. 136-176. Zbl0179.41102MR208078
  18. [Me] V.K. Melnikov, On the Stability of the Center for Time Periodic Perturbations, Trans. Moscow Math. Math. Soc., Vol. 12, 1963, pp. 1-57. Zbl0135.31001MR156048
  19. [N] N. Nekhorossev, An Exponential Estimate of the Time of Stability of Nearly Integrable Hamiltonian Systems, Russian Mathematical Surveys, Vol. 32, 1975, pp. 1-65. Zbl0389.70028
  20. [Nei] A.I. Neihstad, The Separation of Motions in Systems with Rapidly Rotating Phase, PMM U.S.S.R., Vol. 48, 1984, pp. 133-139. Zbl0571.70022MR802878
  21. [P] H. Poincaré, Les Méthodes nouvelles de la mécanique céleste, 1892, reprinted by Blanchard, Paris, 1987. Zbl0651.70002
  22. [Pö] J. Pöschel, Integrability of Hamiltonian Systems on Cantor Sets, Communications Pure Appl. Math., Vol. 35, 1982, pp. 653-696. Zbl0542.58015MR668410
  23. [Sv] N.V. Svanidze, Small Perturbations of an Integrable Dynamical System with an Integral Invariant, Proceed. Steklov Institute of Math., Vol. 2, 1981. Zbl0463.58016MR573904
  24. [Z] E. Zehnder, Generalized Implicit Function Theorems with Applications to some Small Divisor Problems I, II, Communications Pure Applied Mathematics, Vol. 28, 1975, pp. 91-140. Zbl0309.58006MR380867

Citations in EuDML Documents

top
  1. Luca Biasco, Luigi Chierchia, Nekhoroshev stability for the D’Alembert problem of Celestial Mechanics
  2. Giovanni M. Gallavotti, Reminiscences on science at IHÉS. A problem on homoclinic theory and a brief review
  3. Jean-Pierre Marco, Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques
  4. L. Chierchia, C. Falcolini, A direct proof of a theorem by Kolmogorov in hamiltonian systems
  5. Massimiliano Berti, Philippe Bolle, Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems
  6. Massimiliano Berti, Luca Biasco, Philippe Bolle, Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
  7. Massimiliano Berti, Philippe Bolle, A functional analysis approach to Arnold diffusion

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.