Resurgent methods in semi-classical asymptotics
Annales de l'I.H.P. Physique théorique (1999)
- Volume: 71, Issue: 1, page 1-94
- ISSN: 0246-0211
Access Full Article
topHow to cite
topDelabaere, Eric, and Pham, Frédéric. "Resurgent methods in semi-classical asymptotics." Annales de l'I.H.P. Physique théorique 71.1 (1999): 1-94. <http://eudml.org/doc/76831>.
@article{Delabaere1999,
author = {Delabaere, Eric, Pham, Frédéric},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {WKB expansions; one-dimensional Schrödinger equations; confluence; simple turning points; resurgent functions; Euler gamma function; Weber parabolic cylinder functions},
language = {eng},
number = {1},
pages = {1-94},
publisher = {Gauthier-Villars},
title = {Resurgent methods in semi-classical asymptotics},
url = {http://eudml.org/doc/76831},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Delabaere, Eric
AU - Pham, Frédéric
TI - Resurgent methods in semi-classical asymptotics
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 71
IS - 1
SP - 1
EP - 94
LA - eng
KW - WKB expansions; one-dimensional Schrödinger equations; confluence; simple turning points; resurgent functions; Euler gamma function; Weber parabolic cylinder functions
UR - http://eudml.org/doc/76831
ER -
References
top- [1] E. Delabaere, H. Dillinger and F. Pham, Exact semi-classical expansions for one dimensional quantum oscillators, J. Math. Phys.38 (12) (1997) 6126-6184. Zbl0896.34051MR1483488
- [2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, 1989. Zbl0865.00014MR1079938
- [3] E. Delabaere and F. Pham, Unfolding the quartic oscillator, Ann. Phys.261 (2) (1997) 180-218. Zbl0977.34052MR1487700
- [4] C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev.184 (1969) 1231- 1260. MR260323
- [5] E. Delabaere, H. Dillinger et F. Pham, Résurgence de Voros et périodes des courbes hyperelliptiques, Annales de l'Institut Fourier43 (1) (1993) 163-199. Zbl0766.34032MR1209700
- [6] A. Voros, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré, Physique Théorique39 (3) (1983) 211-338. Zbl0526.34046MR729194
- [7] A. Voros, Résurgence quantique, Ann. Inst. Fourier43 (5) (1993) 1509-1534. Zbl0807.35105MR1275207
- [8] J. Ecalle, Les fonctions résurgentes, Publ. Math. d'Orsay, Université Paris-Sud, 1981-05, 1981-06, 1985-05. Zbl0499.30034
- [9] J. Ecalle, Cinq applications des fonctions résurgentes, Publ. Math. d'Orsay, Université Paris-Sud, 84T62, Orsay.
- [10] A.O. Jidoumou, Modéles de Résurgence paramétrique (fonctions d'Airy et cylindro-paraboliques), J. Math. Pures et Appl.73 (2) (1994) 111-190. Zbl0867.34046MR1270144
- [11] M.V. Berry and K.E. Mount, Semiclassical approximations in wave mechanics, Rep. Progr.Phys.35 (1972) 315-397.
- [12] V. Guillemin and S. Sternberg, Geometric Asymptotics, AMS Surveys14, 1977. Zbl0364.53011MR516965
- [13] T. Kawai and Y. Takei, Secular equations through the exact WKB analysis, in: Analyse Algébrique des Perturbations Singulières I: Méthodes Résurgentes, Travaux en cours, Hermann, Paris, 1994, pp. 85-102. Zbl0834.34068MR1296473
- [14] T. Aoki, T. Kawai and Y. Takei, Algebraic analysis of singular perturbations on exact WKB analysis, Sugaku Expositions8 (2) (1995) 217-240. Zbl0871.32015MR1369824
- [15] F. Pham, Resurgence, quantized canonical transformations and multi-instanton expansions, in: K. Kawai (Ed.), Algebraic Analysis II, Volume in honor of M. Sato and R.I.M.S. Kyoto, Academic Press, 1988, pp. 699-726. Zbl0686.58032MR992490
- [16] F. Pham, Confluence of turning points in exact WKB analysis, in: B.L.J. Braaksma, G.K. Immink and M. van der Put (Eds.), The Sokes Phenomenon and Hilbert's 16th Problem, World Scientific, 1996, pp. 215-235. Zbl0857.34057MR1443695
- [17] B. Candelpergher, C. Nosmas et F. Pham, Premiers pas en calcul étranger, Annales de l'Institut Fourier43 (1) (1993) 201-224. Zbl0785.30017MR1209701
- [18] B. Candelpergher, C. Nosmas et F. Pham, Approche de la Résurgence, Hermann, Paris, 1992. Zbl0791.32001
- [19] J. Ecalle, Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac, Actualités Mathématiques, Hermann, Paris, 1992. MR1399559
- [20] J. Ecalle, Six lectures on transseries, analysable functions and the constructive proof of Dulac's conjecture, in: D. Schlomiuk (Ed.), Bifurcations and Periodic Orbits of Vector Fields, Kluwer Academic, 1993, pp. 75-184. Zbl0814.32008MR1258519
- [21] R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain, I Ann. of Physics60 (2) (1970) 401-447; II Ann. of Physics63 (2) (1971) 271-307; III Ann. of Physics69 (1) (1972) 76-160. Zbl0207.40202
- [22] R. Balian and C. Bloch, Asymptotic evaluation of the Green's function for large quantum numbers, Ann. Phys.63 (2) (1971) 592-606.
- [23] R. Balian and C. Bloch, Solution of the Schrödinger equation in terms of classical paths, Ann. Phys.85 (1974) 514-545. Zbl0281.35029MR438937
- [24] F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci.Paris, Série I 309 (1989) 999-1001. Zbl0734.32001MR1054521
- [25] B. Sternin and V. Shatalov, Borel-Laplace Transform and Asymptotic Theory (Introduction to Resurgent Analysis), CRC Press, Boca Raton, FL, 1995. Zbl0852.34001MR1397029
- [26] M.A. Evgrafov and M.V. Fedoryuk, Asymptotic behaviour as λ → ∞ of the solution of the equation w''(z)- p(z, λ)w(z) = 0 in the complex plane, Russian Math. Surveys21 (1966) 1-48. Zbl0173.33801
- [27] Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, Mathematics Studies18, North-Holland, 1975. Zbl0322.34006MR486867
- [28] M.V. Berry, Stokes phenomena; smoothing a victorian discontinuity, Pub. Math. IHES 68 (volume en l'honneur de René Thom) (1989). Zbl0701.58012MR1001456
- [29] J. Ecalle, Weighted products and parametric resurgence, in: Analyse Algébrique des Perturbations Singulières I: Méthodes Résurgentes, Travaux en cours, Hermann, Paris, 1994, pp. 7-49. Zbl0834.34067MR1296470
- [30] E. Delabaere, Un peu d'asymptotique. Pupé 28, janvier 1997, Université de Nice-Sophia Antipolis, URA168 J.A. Dieudonné.
- [31] C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Mc Graw-Hill, 1978. Zbl0417.34001MR538168
- [32] V.I. Arnold, Méthodes Mathématiques de la Mécanique Classique, Mir, Moscou, 1976. Zbl0385.70001MR474391
- [33] F. Pham, Resurgence d'un thème de Huygens-Fresnel, Pub. Math. IHES68 (volume en l'honneur de René Thom) (1989) 77-90. Zbl0688.35093MR1001448
- [34] J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy III), Bull. Soc. Math.France87 (1959) 81-180. Zbl0199.41203MR125984
- [35] J. Zinn-Justin, From Instantons to Exact Results. "Analyse Algébrique des Perturbations Singulières I: Méthodes Résurgentes", Travaux en cours, Hermann, Paris, 1994, pp. 51-68. Zbl0831.34090MR1296471
- [36] R.P. Boas, Entire Functions, Academic Press, New York, 1954. Zbl0058.30201MR68627
Citations in EuDML Documents
top- Eric Delabaere, Jean-Marc Rasoamanana, Sommation effective d’une somme de Borel par séries de factorielles
- Ovidiu Costin, Stavros Garoufalidis, Resurgence of the Euler-MacLaurin summation formula
- Duc Tai Trinh, Coefficients de Stokes du modèle cubique : point de vue de la résurgence quantique
- Ovidiu Costin, Stavros Garoufalidis, Resurgence of the Kontsevich-Zagier series
- , Publications de Frédéric Pham
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.