Periodic and heteroclinic orbits for a periodic hamiltonian system
Annales de l'I.H.P. Analyse non linéaire (1989)
- Volume: 6, Issue: 5, page 331-346
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRabinowitz, Paul H.. "Periodic and heteroclinic orbits for a periodic hamiltonian system." Annales de l'I.H.P. Analyse non linéaire 6.5 (1989): 331-346. <http://eudml.org/doc/78182>.
@article{Rabinowitz1989,
author = {Rabinowitz, Paul H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian system; periodic solution; heteroclinic solutions},
language = {eng},
number = {5},
pages = {331-346},
publisher = {Gauthier-Villars},
title = {Periodic and heteroclinic orbits for a periodic hamiltonian system},
url = {http://eudml.org/doc/78182},
volume = {6},
year = {1989},
}
TY - JOUR
AU - Rabinowitz, Paul H.
TI - Periodic and heteroclinic orbits for a periodic hamiltonian system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 5
SP - 331
EP - 346
LA - eng
KW - Hamiltonian system; periodic solution; heteroclinic solutions
UR - http://eudml.org/doc/78182
ER -
References
top- [1] K.C. Chang, On the Periodic Nonlinearity and Multiplicity of Solutions, Nonlinear Analysis, T.M.A. (to appear). Zbl0681.58036MR993256
- [2] A. Fonda and J. Mawhin, Multiple Periodic Solutions of Conservative Systems with Periodic Nonlinearity, preprint. Zbl0718.34054MR1026152
- [3] J. Franks, Generalizations of the Poincaré-Birkhoff Theorem, preprint. Zbl0676.58037MR951509
- [4] Li Shujie, Multiple Critical Points of Periodic Functional and Some Applications, International Center for Theoretical Physics Tech. Rep. IC-86-191,
- [5] J. Mawhin, Forced Second Order Conservative Systems with Periodic Nonlinearity, Analyse Nonlineaire (to appear). Zbl0688.70019
- [6] J. Mawhin and M. Willem, Multiple Solutions of the Periodic Boundary Value Problem for Some Forced Pendulum-Type Equations, J. Diff. Eq., Vol, 52, 1984, pp. 264-287. Zbl0557.34036MR741271
- [7] P. Pucci and J. Serrin, A Mountain Pass Theorem, J. Diff. Eq., Vol. 60, 1985, pp. 142- 149. Zbl0585.58006MR808262
- [8] P. Pucci and J. Serrin, Extensions of the Mountain Pass Theorem, Univ. of Minnesota Math. Rep. 83-150. Zbl0564.58012
- [9] P.H. Rabinowitz, On a Class of Functionals Invariant Under a Zn Action, Trans. A.M.S. (to appear). Zbl0718.34057
- [10] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. No. 56, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
- [11] A.M. Lyapunov, The General Problem of Instability of a Motion, ONTI, Moscow- Leningrad, 1935.
- [12] V.V. Kozlov, Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 238-239. Zbl0478.70004MR608950
- [13] V.V. Kozlov, On the Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 257-258. Zbl0556.70003MR608950
Citations in EuDML Documents
top- P. L. Felmer, Heteroclinic orbits for spatially periodic hamiltonian systems
- Kazunaga Tanaka, Homoclinic orbits for a singular second order hamiltonian system
- Marek Izydorek, Joanna Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces
- Joanna Janczewska, The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in
- Joanna Janczewska, Jakub Maksymiuk, Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
- Paolo Caldiroli, Margherita Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems in R2
- Roberto Giambò, Fabio Giannoni, Paolo Piccione, On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
- Fabio Giannoni, Louis Jeanjean, Kazunaga Tanaka, Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.