Periodic and heteroclinic orbits for a periodic hamiltonian system

Paul H. Rabinowitz

Annales de l'I.H.P. Analyse non linéaire (1989)

  • Volume: 6, Issue: 5, page 331-346
  • ISSN: 0294-1449

How to cite

top

Rabinowitz, Paul H.. "Periodic and heteroclinic orbits for a periodic hamiltonian system." Annales de l'I.H.P. Analyse non linéaire 6.5 (1989): 331-346. <http://eudml.org/doc/78182>.

@article{Rabinowitz1989,
author = {Rabinowitz, Paul H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hamiltonian system; periodic solution; heteroclinic solutions},
language = {eng},
number = {5},
pages = {331-346},
publisher = {Gauthier-Villars},
title = {Periodic and heteroclinic orbits for a periodic hamiltonian system},
url = {http://eudml.org/doc/78182},
volume = {6},
year = {1989},
}

TY - JOUR
AU - Rabinowitz, Paul H.
TI - Periodic and heteroclinic orbits for a periodic hamiltonian system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1989
PB - Gauthier-Villars
VL - 6
IS - 5
SP - 331
EP - 346
LA - eng
KW - Hamiltonian system; periodic solution; heteroclinic solutions
UR - http://eudml.org/doc/78182
ER -

References

top
  1. [1] K.C. Chang, On the Periodic Nonlinearity and Multiplicity of Solutions, Nonlinear Analysis, T.M.A. (to appear). Zbl0681.58036MR993256
  2. [2] A. Fonda and J. Mawhin, Multiple Periodic Solutions of Conservative Systems with Periodic Nonlinearity, preprint. Zbl0718.34054MR1026152
  3. [3] J. Franks, Generalizations of the Poincaré-Birkhoff Theorem, preprint. Zbl0676.58037MR951509
  4. [4] Li Shujie, Multiple Critical Points of Periodic Functional and Some Applications, International Center for Theoretical Physics Tech. Rep. IC-86-191, 
  5. [5] J. Mawhin, Forced Second Order Conservative Systems with Periodic Nonlinearity, Analyse Nonlineaire (to appear). Zbl0688.70019
  6. [6] J. Mawhin and M. Willem, Multiple Solutions of the Periodic Boundary Value Problem for Some Forced Pendulum-Type Equations, J. Diff. Eq., Vol, 52, 1984, pp. 264-287. Zbl0557.34036MR741271
  7. [7] P. Pucci and J. Serrin, A Mountain Pass Theorem, J. Diff. Eq., Vol. 60, 1985, pp. 142- 149. Zbl0585.58006MR808262
  8. [8] P. Pucci and J. Serrin, Extensions of the Mountain Pass Theorem, Univ. of Minnesota Math. Rep. 83-150. Zbl0564.58012
  9. [9] P.H. Rabinowitz, On a Class of Functionals Invariant Under a Zn Action, Trans. A.M.S. (to appear). Zbl0718.34057
  10. [10] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. No. 56, Amer. Math. Soc., Providence, RI, 1986. Zbl0609.58002MR845785
  11. [11] A.M. Lyapunov, The General Problem of Instability of a Motion, ONTI, Moscow- Leningrad, 1935. 
  12. [12] V.V. Kozlov, Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 238-239. Zbl0478.70004MR608950
  13. [13] V.V. Kozlov, On the Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 257-258. Zbl0556.70003MR608950

Citations in EuDML Documents

top
  1. P. L. Felmer, Heteroclinic orbits for spatially periodic hamiltonian systems
  2. Kazunaga Tanaka, Homoclinic orbits for a singular second order hamiltonian system
  3. Marek Izydorek, Joanna Janczewska, The shadowing chain lemma for singular Hamiltonian systems involving strong forces
  4. Joanna Janczewska, The Existence and Multiplicity of Heteroclinic and Homoclinic Orbits for a Class of Singular Hamiltonian Systems in 𝐑 2
  5. Joanna Janczewska, Jakub Maksymiuk, Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3
  6. Paolo Caldiroli, Margherita Nolasco, Multiple homoclinic solutions for a class of autonomous singular systems in R2
  7. Roberto Giambò, Fabio Giannoni, Paolo Piccione, On the multiplicity of brake orbits and homoclinics in Riemannian manifolds
  8. Fabio Giannoni, Louis Jeanjean, Kazunaga Tanaka, Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.