Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity

Takashi Suzuki

Annales de l'I.H.P. Analyse non linéaire (1992)

  • Volume: 9, Issue: 4, page 367-397
  • ISSN: 0294-1449

How to cite

top

Suzuki, Takashi. "Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity." Annales de l'I.H.P. Analyse non linéaire 9.4 (1992): 367-397. <http://eudml.org/doc/78285>.

@article{Suzuki1992,
author = {Suzuki, Takashi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global bifurcation; rearrangement; bounded domain; nonlinear elliptic eigenvalue problem; Emden-Fowler equation; one-point blow-up singular limit},
language = {eng},
number = {4},
pages = {367-397},
publisher = {Gauthier-Villars},
title = {Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity},
url = {http://eudml.org/doc/78285},
volume = {9},
year = {1992},
}

TY - JOUR
AU - Suzuki, Takashi
TI - Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 367
EP - 397
LA - eng
KW - global bifurcation; rearrangement; bounded domain; nonlinear elliptic eigenvalue problem; Emden-Fowler equation; one-point blow-up singular limit
UR - http://eudml.org/doc/78285
ER -

References

top
  1. [1] C. Bandle, Existence Theorems, Qualitative Results and a priori Bounds for a Class of Nonlinear Dirichlet Problems, Arch. Rat. Mech. Anal., Vol. 58, 1975, pp. 219-238. Zbl0335.35046MR454336
  2. [2] C. Bandle, On a Differential Inequality and its Application to Geometry, Math. Z., Vol. 147, 1976, pp. 253-261. Zbl0316.35009MR425773
  3. [3] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melboume, 1980. Zbl0436.35063MR572958
  4. [4] S.Y. Cheng, Eigenfunctions and Nodal Sets, Comment. Math. Helvetici, Vol. 51, 1976, pp. 43-55. Zbl0334.35022MR397805
  5. [5] M.G. Crandall et P.H. Rabinowitz, Some Continuation and Variational Methods for Positive Solutions of Nonlinear Elliptic Eigenvalu Problems, Arch. Rat. Mech. Anam., Vol. 58, 1975, pp. 207-218. Zbl0309.35057MR382848
  6. [6] H. Fujita, On the Nonlinear Equations Δu+eu=0 and ∂v/∂t = Δv + ev, Bull. Am. Math. Soc., Vol. 75, 1969, pp. 132-135. Zbl0216.12101MR239258
  7. [7] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin-Heidelberg- New York, 1976. Zbl0342.47009MR407617
  8. [8] J.P. Keener et H.B. Keller, Positive Solutions of Convex Nonlinear Eigenvalue Problem, J. Diff. Eq., Vol. 16, 1974, pp. 103-125. Zbl0287.35074MR346305
  9. [9] H.B. Keller et D.S. Cohen, Some Positive Problems Suggested by Nonlinear Heat Generation, J. Math. Mech., 16, 1967, pp. 1361-1376. Zbl0152.10401MR213694
  10. [10] T. Laetsch, On the Number of Boundary Value Problems with Convex Nonlinearities, J. Math. Anal. Appl., Vol. 35, 1971, pp. 389-404. Zbl0191.40102MR280869
  11. [11] S.S. Lin, On Non-Radially Symmetric Bifurcations in the Annulus, J. Diff. Eq., 80, 1989, pp. 251-279. Zbl0688.35005MR1011150
  12. [12] J. Liouville, Sur l'équation aux différences partielles ∂2 Log λ/∂u∂v±λ/2a2=0, J. Math., Vol. 18, 1853, pp. 71-72. 
  13. [13] J.L. Moseley, A Two-Dimensional Dirichlet Problem with an Exponential Nonlinearily, SIAM J. Math. Anal., Vol. 14, 1983, pp. 934-946. Zbl0543.35036MR711174
  14. [14] K. Nagasaki et T. Suzuki, Radial and Nonradial Solutions for the Nonlinear Eigenvalue problem Δu+λeu=0 on Annului in R2, J. Diff. Eq., Vol. 87, 1990, pp. 144-168. Zbl0717.35030MR1070032
  15. [15] K. Nagasaki et T. Suzuki, Asymptotic Analysis for Two-Dimensional Elliptic Eigenvalue Problems with Exponentially-Dominated Nonlinearities, Asymptotic Analysis, Vol. 3, 1990, pp. 173-188. Zbl0726.35011MR1061665
  16. [16] Z. Nehari, On the Principal Frequency of a Membrane, Pac. J. Math., Vol. 8, 1958, pp. 285-293. Zbl0086.19204MR97606
  17. [17] Å. Pleijel, Remarks on Courant's Nodal Line Theorem, Comm. Pure Appl. Math., Vol. 9, 1956, pp. 543-550. Zbl0070.32604MR80861
  18. [18] T. Suzuki et K. Nagasaki, On the Nonlinear Eigenvalue Problem Δu+λeu=0, Trans. Am. Math. Soc., Vol. 309, 1988, pp. 591-608. Zbl0711.35043MR961602
  19. [19] H. Wente, Counterexample to a Conjecture of H. Hopf, Pacific J. Math., Vol. 121, 1986, pp. 193-243. Zbl0586.53003MR815044
  20. [20] V.H. Weston, On the Asymptotic Solution of a Partial Differential Equation with an Exponential Nonlinearity, SIAM J. Math. Anal., Vol. 9, 1978, pp. 1030-1053. Zbl0402.35038MR512508

Citations in EuDML Documents

top
  1. Weiyue Ding, Jürgen Jost, Jiayu Li, Guofang Wang, Existence results for mean field equations
  2. Michael Struwe, Gabriella Tarantello, On multivortex solutions in Chern-Simons gauge theory
  3. Francesca Gladiali, Massimo Grossi, On the spectrum of a nonlinear planar problem
  4. Chuin Chuan Chen, Chang-Shou Lin, On the symmetry of blowup solutions to a mean field equation
  5. Pierpaolo Esposito, Massimo Grossi, Angela Pistoia, On the existence of blowing-up solutions for a mean field equation
  6. Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II
  7. Piotr Biler, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
  8. Chang-Shou Lin, Marcello Lucia, One-dimensional symmetry of periodic minimizers for a mean field equation
  9. Marcello Lucia, Isoperimetric profile and uniqueness for Neumann problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.