Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity
Annales de l'I.H.P. Analyse non linéaire (1992)
- Volume: 9, Issue: 4, page 367-397
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSuzuki, Takashi. "Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity." Annales de l'I.H.P. Analyse non linéaire 9.4 (1992): 367-397. <http://eudml.org/doc/78285>.
@article{Suzuki1992,
author = {Suzuki, Takashi},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {global bifurcation; rearrangement; bounded domain; nonlinear elliptic eigenvalue problem; Emden-Fowler equation; one-point blow-up singular limit},
language = {eng},
number = {4},
pages = {367-397},
publisher = {Gauthier-Villars},
title = {Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity},
url = {http://eudml.org/doc/78285},
volume = {9},
year = {1992},
}
TY - JOUR
AU - Suzuki, Takashi
TI - Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1992
PB - Gauthier-Villars
VL - 9
IS - 4
SP - 367
EP - 397
LA - eng
KW - global bifurcation; rearrangement; bounded domain; nonlinear elliptic eigenvalue problem; Emden-Fowler equation; one-point blow-up singular limit
UR - http://eudml.org/doc/78285
ER -
References
top- [1] C. Bandle, Existence Theorems, Qualitative Results and a priori Bounds for a Class of Nonlinear Dirichlet Problems, Arch. Rat. Mech. Anal., Vol. 58, 1975, pp. 219-238. Zbl0335.35046MR454336
- [2] C. Bandle, On a Differential Inequality and its Application to Geometry, Math. Z., Vol. 147, 1976, pp. 253-261. Zbl0316.35009MR425773
- [3] C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melboume, 1980. Zbl0436.35063MR572958
- [4] S.Y. Cheng, Eigenfunctions and Nodal Sets, Comment. Math. Helvetici, Vol. 51, 1976, pp. 43-55. Zbl0334.35022MR397805
- [5] M.G. Crandall et P.H. Rabinowitz, Some Continuation and Variational Methods for Positive Solutions of Nonlinear Elliptic Eigenvalu Problems, Arch. Rat. Mech. Anam., Vol. 58, 1975, pp. 207-218. Zbl0309.35057MR382848
- [6] H. Fujita, On the Nonlinear Equations Δu+eu=0 and ∂v/∂t = Δv + ev, Bull. Am. Math. Soc., Vol. 75, 1969, pp. 132-135. Zbl0216.12101MR239258
- [7] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin-Heidelberg- New York, 1976. Zbl0342.47009MR407617
- [8] J.P. Keener et H.B. Keller, Positive Solutions of Convex Nonlinear Eigenvalue Problem, J. Diff. Eq., Vol. 16, 1974, pp. 103-125. Zbl0287.35074MR346305
- [9] H.B. Keller et D.S. Cohen, Some Positive Problems Suggested by Nonlinear Heat Generation, J. Math. Mech., 16, 1967, pp. 1361-1376. Zbl0152.10401MR213694
- [10] T. Laetsch, On the Number of Boundary Value Problems with Convex Nonlinearities, J. Math. Anal. Appl., Vol. 35, 1971, pp. 389-404. Zbl0191.40102MR280869
- [11] S.S. Lin, On Non-Radially Symmetric Bifurcations in the Annulus, J. Diff. Eq., 80, 1989, pp. 251-279. Zbl0688.35005MR1011150
- [12] J. Liouville, Sur l'équation aux différences partielles ∂2 Log λ/∂u∂v±λ/2a2=0, J. Math., Vol. 18, 1853, pp. 71-72.
- [13] J.L. Moseley, A Two-Dimensional Dirichlet Problem with an Exponential Nonlinearily, SIAM J. Math. Anal., Vol. 14, 1983, pp. 934-946. Zbl0543.35036MR711174
- [14] K. Nagasaki et T. Suzuki, Radial and Nonradial Solutions for the Nonlinear Eigenvalue problem Δu+λeu=0 on Annului in R2, J. Diff. Eq., Vol. 87, 1990, pp. 144-168. Zbl0717.35030MR1070032
- [15] K. Nagasaki et T. Suzuki, Asymptotic Analysis for Two-Dimensional Elliptic Eigenvalue Problems with Exponentially-Dominated Nonlinearities, Asymptotic Analysis, Vol. 3, 1990, pp. 173-188. Zbl0726.35011MR1061665
- [16] Z. Nehari, On the Principal Frequency of a Membrane, Pac. J. Math., Vol. 8, 1958, pp. 285-293. Zbl0086.19204MR97606
- [17] Å. Pleijel, Remarks on Courant's Nodal Line Theorem, Comm. Pure Appl. Math., Vol. 9, 1956, pp. 543-550. Zbl0070.32604MR80861
- [18] T. Suzuki et K. Nagasaki, On the Nonlinear Eigenvalue Problem Δu+λeu=0, Trans. Am. Math. Soc., Vol. 309, 1988, pp. 591-608. Zbl0711.35043MR961602
- [19] H. Wente, Counterexample to a Conjecture of H. Hopf, Pacific J. Math., Vol. 121, 1986, pp. 193-243. Zbl0586.53003MR815044
- [20] V.H. Weston, On the Asymptotic Solution of a Partial Differential Equation with an Exponential Nonlinearity, SIAM J. Math. Anal., Vol. 9, 1978, pp. 1030-1053. Zbl0402.35038MR512508
Citations in EuDML Documents
top- Weiyue Ding, Jürgen Jost, Jiayu Li, Guofang Wang, Existence results for mean field equations
- Michael Struwe, Gabriella Tarantello, On multivortex solutions in Chern-Simons gauge theory
- Francesca Gladiali, Massimo Grossi, On the spectrum of a nonlinear planar problem
- Chuin Chuan Chen, Chang-Shou Lin, On the symmetry of blowup solutions to a mean field equation
- Pierpaolo Esposito, Massimo Grossi, Angela Pistoia, On the existence of blowing-up solutions for a mean field equation
- Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, II
- Piotr Biler, Tadeusz Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I
- Chang-Shou Lin, Marcello Lucia, One-dimensional symmetry of periodic minimizers for a mean field equation
- Marcello Lucia, Isoperimetric profile and uniqueness for Neumann problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.