On a new class of elastic deformations not allowing for cavitation
Annales de l'I.H.P. Analyse non linéaire (1994)
- Volume: 11, Issue: 2, page 217-243
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMüller, S., Qi, Tang, and Yan, B. S.. "On a new class of elastic deformations not allowing for cavitation." Annales de l'I.H.P. Analyse non linéaire 11.2 (1994): 217-243. <http://eudml.org/doc/78330>.
@article{Müller1994,
author = {Müller, S., Qi, Tang, Yan, B. S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear elasticity; divergence identity; degree formula; absolutely continuous minimizer},
language = {eng},
number = {2},
pages = {217-243},
publisher = {Gauthier-Villars},
title = {On a new class of elastic deformations not allowing for cavitation},
url = {http://eudml.org/doc/78330},
volume = {11},
year = {1994},
}
TY - JOUR
AU - Müller, S.
AU - Qi, Tang
AU - Yan, B. S.
TI - On a new class of elastic deformations not allowing for cavitation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 2
SP - 217
EP - 243
LA - eng
KW - nonlinear elasticity; divergence identity; degree formula; absolutely continuous minimizer
UR - http://eudml.org/doc/78330
ER -
References
top- [Ad75] R. Adams, Sobolev Spaces, Academic Press, 1975. Zbl0314.46030MR450957
- [Ba77] J.M. Ball, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
- [Ba81] J.M. Ball, Global Invertibility of Sobolev Functions and the Interpenetration of Matter, Proc. Roy. Soc. Edinburgh, Vol. 88A, 1981, pp. 315-328. Zbl0478.46032MR616782
- [Ba82] J.M. Ball, Discontinuous Equilibrium Solutions and Cavitation in Non-Linear Elasticity, Phil. Trans. Roy. Soc. London, Vol. 306A, 1982, pp. 557-612. Zbl0513.73020MR703623
- [BM84] J.M. Ball and F. Murat, W1, p-Quasiconvexity and Variational Problems for Multiple Integrals, J. Funct. Anal., Vol. 58, 1984, pp. 225-253. Zbl0549.46019MR759098
- [Be50] A.S. Besicovitch, Parametric Surfaces, Bull. Am. Math. Soc., Vol. 56, 1950, pp. 228-296. Zbl0038.20401MR36825
- [BI83] B. Bojarski and T. Iwaniec, Analytical Foundations of the Theory of Quasiconformal Mappings in Rn, Ann. Acad. Sci. Fenn., Ser. A, Vol. 8, 1983, pp. 257-324. Zbl0548.30016MR731786
- [BFS92] H. Brezis, N. Fusco and C. Sbordone, Integrability of the Jacobian of Orientation Preserving Mappings, J. Funct. Anal., Vol. 115, 1993, pp. 425-431. Zbl0847.26012MR1234399
- [CN87] P.G. Ciarlet and J. Necas, Injectivity and Self-Contact in Non-Linear Elasticity, Arch. Rat. Mech. Anal., Vol. 97, 1987, pp. 171-188. Zbl0628.73043MR862546
- [CLMS89] R. Coifman, P.L. Lions, Y. Meyer and S. Semmes, Compacité par compensation et espaces de Hardy, C.R. Acad. Sci. Paris, T. 309, Serie I, 1989, pp. 945-949; Compensated Compactness and Hardy Spaces, J. Math Pures Appl., Vol. 72, 1993, pp. 247-286. Zbl0864.42009
- [Da89] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1989. Zbl0703.49001MR990890
- [EG91] L.C. Evans and R.E. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, C.R.C. Publ., 1991.
- [Fe69] H. Federer, Geometric Measure Theory, Springer, 1969. Zbl0176.00801MR257325
- [F163] H. Flanders, Differential Forms, Academic Press, 1963. Zbl0112.32003MR162198
- [GT83] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2nd ed., 1983. Zbl0562.35001MR737190
- [Tu84] E. Giusti, Minimal Surfaces and Functions of Bounded Variations, Birkhäuser, 1984. Zbl0545.49018MR775682
- [GI92] L. Greco and T. Iwaniec, New Inequalities for the Jacobian, Preprint.
- [IL92] T. Iwaniec and A. Lutoborski, Integral Estimatesfor Null Lagrangians, Preprint, Syracuse University. MR1241286
- [IS91] T. Iwaniec and C. Sbordone, On the Integrability of the Jacobian Under Minimal Hypotheses, Arch. Rat. Mech. Anal., Vol. 119, 1992, pp. 129-143. Zbl0766.46016MR1176362
- [MM92] J. Maly and O. Martio, Lusin's Condition (N) and Mappings of the Class W1, n, Preprint. Zbl0812.30007
- [Ma92] J.J. Manfredi, Weakly Monotone Functions, Preprint. MR1294334
- [Me66] P.A. Meyer, Probability and Potentials, Waltham, 1966. Zbl0138.10401MR205288
- [MM73] M. Marcus and V.J. Mizel, Transformations by Functions in Sobolev Spaces and Lower Semicontinuity for Parametric Variational Problems, Bull. Amer Math. Soc., Vol. 79, 1973, pp. 790-795. Zbl0275.49041MR322651
- [Mo66] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, 1966. Zbl0142.38701
- [MS47] E.J. Mcshane, Integration, Princeton Univ. press, 1947. Zbl0033.05302MR82536
- [Mu89] S. Müller, A Surprising Higher Integrability Property of Mappings with Positive Determinant, Bull. Amer Math. Soc., Vol. 21, 1989, pp. 245-248. Zbl0689.49006MR999618
- [Mu90 a] S. Müller, Det = det. A Remark on the Distributional Determinant, C.R. Acad. Sci., Paris, Vol. 311, 1990, pp. 13-17. Zbl0717.46033MR1062920
- [Mu90 b] S. Müller, Higher Integrability of Determinants and Weak Convergence in L1, J. reine angew. Math., Vol. 412, 1990, pp. 20-34. Zbl0713.49004MR1078998
- [Mu91 a] S. Müller, A Counter-Example Concerning Formal Integration by Parts, C.R. Acad. Sci., Paris, Vol. 312, 1991, pp. 45-49. Zbl0723.46028
- [Mu91 b] S. Müller, On the Singular Support of the Distributional Determinant, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 10, 1993, pp. 657-696. Zbl0792.46027MR1253606
- [MS92] S. Müller and S.J. Spector, Existence Theorems in Nonlinear Elasticity Allowing for Cavitation, submitted to Arch. Rat. Mech. Anal.
- [MST91] S. Müller, S.J. Spector and Q. Tang, Invertibility and a Topological Property of Sobolev Maps (in preparation). Zbl0855.73028
- [Ne67] J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson, 1967. MR227584
- [Og72] R.W. Ogden, Large Deformation Isotropic Elasticity — On the Correlation of Theory and Experiment for Incompressible Rubber-Like Solids, Proc. Roy. Soc. London, Vol. A326, 1972, pp. 565-584. Zbl0257.73034
- [Re67] Y.G. Reshetnyak, On the Stability of Conformal Mappings in Multidimensional Spaces, Siberian Math. J., Vol. 8, 1967, pp. 65-85. Zbl0172.37801
- [Re89] Y.G. Reshetnyak, Space Mappings with Bounded Distorsion, Transl. Math. Monographs, Vol. 73, Ann. Math. Soc., 1989. Zbl0667.30018MR994644
- [Ri93] S. Rickman, Quasiregular Mappings, Springer, 1993. Zbl0816.30017MR1238941
- [Sc69] J.T. Schwartz, Nonlinear Functional Analysis, Acad. Press, 1969. Zbl0203.14501MR433481
- [Si83] L. Simon, Lectures on Geometric Measure Theory, Centre Math. Anal. Australian National University, 1983. Zbl0546.49019MR756417
- [Sv88] V. Šverák, Regularity Properties of Deformations with Finite Energy, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 105-127. Zbl0659.73038MR913960
- [TQ88] Q. Tang, Almost-Everywhere Injectivity in Nonlinear Elasticity, Proc. Roy. Soc. Edinburgh, Vol. 109A, 1988, pp. 79-95. Zbl0656.73010MR952330
- [VG77] S.K. Vodopyanov and V.M. Goldstein, Quasiconformal Mappings and Spaces of Functions with Generalised First Derivatives, Siberian Math. J., Vol. 12, 1977, pp. 515-531.
- [Zh90] K.W. Zhang, Biting Theorems for Jacobians and their Applications, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 7, 1990, pp. 345-365. Zbl0717.49012MR1067780
Citations in EuDML Documents
top- Zhiming Chen, C. M. Elliott, Tang Qi, Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model
- Roberto van der Putten, Uniqueness and non uniqueness of optimal maps in mass transport problem with not strictly convex cost
- Stefan Müller, On the singular support of the distributional determinant
- Flavia Giannetti, Alcuni problemi relativi ai complessi ellittici
- Paolo Maria Mariano, Giuseppe Modica, Ground states in complex bodies
- Paolo Maria Mariano, Giuseppe Modica, Ground states in complex bodies
- Piotr Hajłasz, A note on weak approximation of minors
- Mikhail A. Sychev, Characterization of homogeneous gradient young measures in case of arbitrary integrands
- Marc Troyanov, Sergei Vodop'yanov, Liouville type theorems for mappings with bounded (co)-distortion
- Guido De Philippis, Weak notions of jacobian determinant and relaxation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.