On the existence of a positive solution of semilinear elliptic equations in unbounded domains
Abbas Bahri; Pierre-Louis Lions
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 3, page 365-413
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBahri, Abbas, and Lions, Pierre-Louis. "On the existence of a positive solution of semilinear elliptic equations in unbounded domains." Annales de l'I.H.P. Analyse non linéaire 14.3 (1997): 365-413. <http://eudml.org/doc/78416>.
@article{Bahri1997,
author = {Bahri, Abbas, Lions, Pierre-Louis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exterior domain; Palais-Smale condition; deformation lemma},
language = {eng},
number = {3},
pages = {365-413},
publisher = {Gauthier-Villars},
title = {On the existence of a positive solution of semilinear elliptic equations in unbounded domains},
url = {http://eudml.org/doc/78416},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Bahri, Abbas
AU - Lions, Pierre-Louis
TI - On the existence of a positive solution of semilinear elliptic equations in unbounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 3
SP - 365
EP - 413
LA - eng
KW - exterior domain; Palais-Smale condition; deformation lemma
UR - http://eudml.org/doc/78416
ER -
References
top- [1] A. Bahri, Pseudo-Orbits of contact forms, PitmanResearch Notes in Mathematics, LongmanLondon, Vol. 173. Zbl0677.58002
- [2] A. Bahri, Critical points at infinity in some variational problems, PitmanResearch Notes in mathematics, Longman, London, Vol. 182. Zbl0676.58021
- [3] A. Bahri, Topological results on a certain class of functionals and applications, J. Funct. Anal., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
- [4] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Vol. 297, 1987, pp. 1-32. Zbl0476.35030MR621969
- [5] A. Bahri and J.M. Coron, On a non-linear ellepttic equation involving the critical Sobolev exponent; the effect of the topology of the domain, Comm. Pure and Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
- [6] V. Benci and G. Cerami, Positive solutions of semilinear elliptic problems in exterior domains. Preprint. Zbl0635.35036
- [7] H. Berestycki and P.-L. Lions, Nonlinear scalar fields equations, Arch. Rat. Mech. Anal., Vol. I 82, 1983, pp. 313-346; Vol. II 82, 1983, pp. 347-376. Zbl0533.35029
- [8] M. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal., Vol. 9, 1972, pp. 249-261. Zbl0224.35061MR299966
- [9] G. Bredon, Introduction to Compact transformation Groups, New York-Academic Press, 1972. Zbl0246.57017MR413144
- [10] H. Brezis and J.M. Coron, convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 21-56. Zbl0584.49024MR784102
- [11] C.V. Coffman, Uniqueness of the groundstate solution for Δu - u + u3 = 0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal., Vol. 46, 1982, pp. 81-95. Zbl0249.35029MR333489
- [12] C.V. Coffman and M. Marcus, personal communication.
- [13] C.V. Coffman and M. Marcus, Existence theorems for superlinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis and Its Applications, Part 2, Vol. 45; AMS, Providence, 1983. Zbl0596.35048
- [14] S. Coleman, V. Glaser and A. Mawhin, Action minima among solutions to a class of Euclidian scalar field equations, Comm. Math. Phys., Vol. 58, 1978, pp. 211-221. MR468913
- [15] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, I, Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
- [16] W.Y. Ding and W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech Anal. Zbl0616.35029
- [17] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., Vol. I, 1979, pp. 443-479. Zbl0441.49011MR526967
- [18] M.J. Esteban and P.-L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edim, Vol. 93, 1982, pp. 1-14; C. R. Acad. Sci. Paris, Vol. 290, 1980, pp. 1083-1085. Zbl0506.35035MR688279
- [19] M.J. Esteban and P.-L. Lions, Γ-convergence and the concentration-compactness method for some variational problems with lack of compactness. Preprint. Zbl0829.49010MR977055
- [20] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
- [21] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Advances in Math. Supplementary Studies, Vol. 7, 1981, pp. 369-402. Zbl0469.35052
- [22] M.K. Kwong, Uniqueness positive solutions of Δu - u + up = 0 in Rn, Arch. Rat. Mech. Anal., Vol. 105, 1985, pp. 243-266. Zbl0676.35032MR969899
- [23] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations, The locally compact case, Ann. Inst. H. Poincaré, Vol. I 1, 1984, pp. 109-145; Vol. II 1, 1984, pp. 223-283, see also, C. R. Acad. Sci. Paris294, Vol. 1, pp. 223-283; 1982, pp. 261-264; Contributions to nonlinear partial differential equations, Pitman, London1983. Zbl0541.49009
- [24] P.-L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains. Preprint. MR956083
- [25] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. Zbl0618.35111MR879032
- [26] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Vol. 49, 1982, pp. 315-334. Zbl0501.46032MR683027
- [27] P.-L. Lions, Minimization problems in L1, J. Funct. Anal., Vol. 49, 1982, pp. 315-334. Zbl0501.46032
- [28] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case, Riv. Mat. Ibereamericana, Vol. I 1, 1985, pp. 145-201; Vol. II 1, 1985, Zbl0704.49005MR834360
- pp. 45-121; see also Seminaire, Goulaouic-Meyer-Schwartz, 1982-1983, exposé XIV, École Polytechnique, Palaiseau and C. R. Acad. Sci. Paris; 296, 1983, pp. 645-648.
- [29] K. Mac Leod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Nat. Acad. Sci. USA, Vol. 78, 1981, pp. 6592-6595. Zbl0474.35047MR634934
- [30] Milnor, Morse theory, Annals of Mathematical Studies, Princeton Univ. Press, Study No. 52. Zbl0108.10401
- [31] Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish Acad., Vol. 62, 1963, pp. 117-135. Zbl0124.30204MR165176
- [32] P.H. Rabinowitz, Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Nonlinear Problems, Edis. Cremonese, Rome, 1972. MR464299
- [33] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations, Proc. J. Math., Vol. 22, 1967, pp. 477-503. Zbl0152.28303MR219794
- [34] P. Saks and K. Uhlenbeck, The existence of minimal immersions of 2-sphere, Ann. Math., Vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
- [35] W. Strauss, Existence of solitary vaves in higher dimensions, Comm. Math. Phys., Vol. 55, 1977, pp. 149-162. Zbl0356.35028MR454365
- [36] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
- [37] C.H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on R3 I, Comm. Math. Physics, Vol. 86, 1982, pp. 257-298. Zbl0514.58016
- [38] C.H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on R3 II, Comm. Math. Physics, Vol. 86, 1982, pp. 299-320. Zbl0514.58017MR677000
Citations in EuDML Documents
top- Dao-Min Cao, Multiple solutions of a semilinear elliptic equation in
- Giovanna Cerami, Riccardo Molle, Multiple positive solutions for singularly perturbed elliptic problems in exterior domains
- Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
- Giovanna Cerami, Riccardo Molle, Donato Passaseo, Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
- Philippe Souplet, Qi S. Zhang, Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states
- Kazunaga Tanaka, Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds
- Daomin Cao, Ezzat S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Infinitely many solutions for a class of semilinear elliptic equations in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.