On the existence of a positive solution of semilinear elliptic equations in unbounded domains

Abbas Bahri; Pierre-Louis Lions

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 3, page 365-413
  • ISSN: 0294-1449

How to cite

top

Bahri, Abbas, and Lions, Pierre-Louis. "On the existence of a positive solution of semilinear elliptic equations in unbounded domains." Annales de l'I.H.P. Analyse non linéaire 14.3 (1997): 365-413. <http://eudml.org/doc/78416>.

@article{Bahri1997,
author = {Bahri, Abbas, Lions, Pierre-Louis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {exterior domain; Palais-Smale condition; deformation lemma},
language = {eng},
number = {3},
pages = {365-413},
publisher = {Gauthier-Villars},
title = {On the existence of a positive solution of semilinear elliptic equations in unbounded domains},
url = {http://eudml.org/doc/78416},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Bahri, Abbas
AU - Lions, Pierre-Louis
TI - On the existence of a positive solution of semilinear elliptic equations in unbounded domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 3
SP - 365
EP - 413
LA - eng
KW - exterior domain; Palais-Smale condition; deformation lemma
UR - http://eudml.org/doc/78416
ER -

References

top
  1. [1] A. Bahri, Pseudo-Orbits of contact forms, PitmanResearch Notes in Mathematics, LongmanLondon, Vol. 173. Zbl0677.58002
  2. [2] A. Bahri, Critical points at infinity in some variational problems, PitmanResearch Notes in mathematics, Longman, London, Vol. 182. Zbl0676.58021
  3. [3] A. Bahri, Topological results on a certain class of functionals and applications, J. Funct. Anal., Vol. 41, 1981, pp. 397-427. Zbl0499.35050MR619960
  4. [4] A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc., Vol. 297, 1987, pp. 1-32. Zbl0476.35030MR621969
  5. [5] A. Bahri and J.M. Coron, On a non-linear ellepttic equation involving the critical Sobolev exponent; the effect of the topology of the domain, Comm. Pure and Appl. Math., Vol. 41, 1988, pp. 253-294. Zbl0649.35033MR929280
  6. [6] V. Benci and G. Cerami, Positive solutions of semilinear elliptic problems in exterior domains. Preprint. Zbl0635.35036
  7. [7] H. Berestycki and P.-L. Lions, Nonlinear scalar fields equations, Arch. Rat. Mech. Anal., Vol. I 82, 1983, pp. 313-346; Vol. II 82, 1983, pp. 347-376. Zbl0533.35029
  8. [8] M. Berger, On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Anal., Vol. 9, 1972, pp. 249-261. Zbl0224.35061MR299966
  9. [9] G. Bredon, Introduction to Compact transformation Groups, New York-Academic Press, 1972. Zbl0246.57017MR413144
  10. [10] H. Brezis and J.M. Coron, convergence of solutions of H-systems or how to blow bubbles, Arch. Rational Mech. Anal., Vol. 89, 1985, pp. 21-56. Zbl0584.49024MR784102
  11. [11] C.V. Coffman, Uniqueness of the groundstate solution for Δu - u + u3 = 0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal., Vol. 46, 1982, pp. 81-95. Zbl0249.35029MR333489
  12. [12] C.V. Coffman and M. Marcus, personal communication. 
  13. [13] C.V. Coffman and M. Marcus, Existence theorems for superlinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis and Its Applications, Part 2, Vol. 45; AMS, Providence, 1983. Zbl0596.35048
  14. [14] S. Coleman, V. Glaser and A. Mawhin, Action minima among solutions to a class of Euclidian scalar field equations, Comm. Math. Phys., Vol. 58, 1978, pp. 211-221. MR468913
  15. [15] J.M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris, I, Vol. 299, 1984, pp. 209-212. Zbl0569.35032MR762722
  16. [16] W.Y. Ding and W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech Anal. Zbl0616.35029
  17. [17] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., Vol. I, 1979, pp. 443-479. Zbl0441.49011MR526967
  18. [18] M.J. Esteban and P.-L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edim, Vol. 93, 1982, pp. 1-14; C. R. Acad. Sci. Paris, Vol. 290, 1980, pp. 1083-1085. Zbl0506.35035MR688279
  19. [19] M.J. Esteban and P.-L. Lions, Γ-convergence and the concentration-compactness method for some variational problems with lack of compactness. Preprint. Zbl0829.49010MR977055
  20. [20] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., Vol. 68, 1979, pp. 209-243. Zbl0425.35020MR544879
  21. [21] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Advances in Math. Supplementary Studies, Vol. 7, 1981, pp. 369-402. Zbl0469.35052
  22. [22] M.K. Kwong, Uniqueness positive solutions of Δu - u + up = 0 in Rn, Arch. Rat. Mech. Anal., Vol. 105, 1985, pp. 243-266. Zbl0676.35032MR969899
  23. [23] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations, The locally compact case, Ann. Inst. H. Poincaré, Vol. I 1, 1984, pp. 109-145; Vol. II 1, 1984, pp. 223-283, see also, C. R. Acad. Sci. Paris294, Vol. 1, pp. 223-283; 1982, pp. 261-264; Contributions to nonlinear partial differential equations, Pitman, London1983. Zbl0541.49009
  24. [24] P.-L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains. Preprint. MR956083
  25. [25] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. Zbl0618.35111MR879032
  26. [26] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., Vol. 49, 1982, pp. 315-334. Zbl0501.46032MR683027
  27. [27] P.-L. Lions, Minimization problems in L1, J. Funct. Anal., Vol. 49, 1982, pp. 315-334. Zbl0501.46032
  28. [28] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case, Riv. Mat. Ibereamericana, Vol. I 1, 1985, pp. 145-201; Vol. II 1, 1985, Zbl0704.49005MR834360
  29. pp. 45-121; see also Seminaire, Goulaouic-Meyer-Schwartz, 1982-1983, exposé XIV, École Polytechnique, Palaiseau and C. R. Acad. Sci. Paris; 296, 1983, pp. 645-648. 
  30. [29] K. Mac Leod and J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Nat. Acad. Sci. USA, Vol. 78, 1981, pp. 6592-6595. Zbl0474.35047MR634934
  31. [30] Milnor, Morse theory, Annals of Mathematical Studies, Princeton Univ. Press, Study No. 52. Zbl0108.10401
  32. [31] Z. Nehari, On a nonlinear differential equation arising in nuclear physics, Proc. Roy. Irish Acad., Vol. 62, 1963, pp. 117-135. Zbl0124.30204MR165176
  33. [32] P.H. Rabinowitz, Variational methods for nonlinear eigenvalue problems. In Eigenvalues of Nonlinear Problems, Edis. Cremonese, Rome, 1972. MR464299
  34. [33] G.H. Ryder, Boundary value problems for a class of nonlinear differential equations, Proc. J. Math., Vol. 22, 1967, pp. 477-503. Zbl0152.28303MR219794
  35. [34] P. Saks and K. Uhlenbeck, The existence of minimal immersions of 2-sphere, Ann. Math., Vol. 113, 1981, pp. 1-24. Zbl0462.58014MR604040
  36. [35] W. Strauss, Existence of solitary vaves in higher dimensions, Comm. Math. Phys., Vol. 55, 1977, pp. 149-162. Zbl0356.35028MR454365
  37. [36] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., Vol. 187, 1984, pp. 511-517. Zbl0535.35025MR760051
  38. [37] C.H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on R3 I, Comm. Math. Physics, Vol. 86, 1982, pp. 257-298. Zbl0514.58016
  39. [38] C.H. Taubes, The existence of a non-minimal solution to the SU(2) Yang-Mills-Higgs equations on R3 II, Comm. Math. Physics, Vol. 86, 1982, pp. 299-320. Zbl0514.58017MR677000

Citations in EuDML Documents

top
  1. Dao-Min Cao, Multiple solutions of a semilinear elliptic equation in N
  2. Giovanna Cerami, Riccardo Molle, Multiple positive solutions for singularly perturbed elliptic problems in exterior domains
  3. Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
  4. Giovanna Cerami, Riccardo Molle, Donato Passaseo, Positive solutions of semilinear elliptic problems in unbounded domains with unbounded boundary
  5. Philippe Souplet, Qi S. Zhang, Stability for semilinear parabolic equations with decaying potentials in Rn and dynamical approach to the existence of ground states
  6. Kazunaga Tanaka, Periodic solutions for singular hamiltonian systems and closed geodesics on non-compact riemannian manifolds
  7. Daomin Cao, Ezzat S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in N
  8. Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in R N
  9. Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in N
  10. Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Infinitely many solutions for a class of semilinear elliptic equations in R N

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.